K\ VAV AN \){ N

N i 1 P4

Vol o N

- e = .
Prany 7 -
e - i

A PARALLEL-PIPELINED ARCH] MULTI CARRIER DEMODULATOR

M. M. Jamall

L.P. Eugene Grad gsearch Assistant

SRR B Rt R . -
| VN AT TP RER AT T
R sl ieohnicsl veport, Jan,
- e a7 (Tolio unive) 47

Final Report

A PARALLEL-PIPELINED ARCHITECTURE FOR A MULTI CARRIER DEMODULATOR

Submitted to:

NASA Lewls Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Submitted by:

S. C. Kwatra Principal Investigator
M. M. Jamali Co-Investigator

L.P. Eugene Graduate Research Assistant

Department of Electrical Engineering
College of Engineering
The University of Toledo
Toledo, Ohio 43606

Report No. DTV1-26

March 1991

This report contains part of the work performed under NASA grant NAG3-865
during the period January 1989 to August 1990. The research was performed as part of

the Masters thesis requirement of Mr. Linus P, Eugene.

S. C. Kwatra

Principal Investigator

ii

ABSTRACT

Analog devices have been used for processing the information on board the
satellites. Presently, digital devices are being used because they are economical and
flexible as compared to their analog counterparts. Several schemes of digital
transmission can be used depending on the data rate requirement of the user. An
economical scheme of transmission for small earth stations uses Single Channel Per
Carrier/Frequency Division Multiple Access (SCPC/FDMA) on the uplink and Time
Division Multiplexing (TDM) on the downlink. This is a typical communication service
offered to low data rate users in comierclal mass market. These channels usually
pertain to either voice or data transmission.

An efficient digital demodulator architecture is provided for a large number of
low data rate users. A demodulator primarily consists of carrier, clock and data
recovery modules. This design uses principles of parallel processing, pipelining and
time sharing schemes to process large number of voice or data channels. It maintains
the optimum throughput which is derived from the designed architecture and from the
use of high speed components. The design is optimized for reduced power and area
requirements. This is essential for satellite applications. The design is also flexible in
processing a group of varying number of channels. The algorithms used are verified by
the use of a Computer Aided Software Engineering (CASE) tool called Block Oriented
System Simulator. The data flow, control circuitry and interface of the hardware
design is simulated in C language.

Also, a multiprocessor approach is provided to map, model and simulate the
demodulation algorithms mainly from a speed view point. A hypercube based
architecture implementation is provided for such a scheme of operation. The

hypercube structure and the demodulation models on hypercubes are simulated in Ada.

iii

TABLE OF CONTENTS

ADSEIBCE...... ..ottt e ett e ea et sttt et e s e e an e eatae e s eeeeeeenne s i
Chapter 1 INTRODUCGTION.......cc.oumiimririiiiiiciiiiriteteeeessstatareeessstaeeneeeaeseseeessassssansneeess 1
Proposed RESEArCR.........c.occuiiiiiiiiiiiiieieceec e 3
Chapter I: SYSTEM BACKGROUND AND PARALLEL PROCESSING OVERVIEW..... 6
Multiple AcCeSS TEChIUQUES..........cccoviiiieiiieiiiiee e cereeee e e e seevaaeeans 6

Satellite SyStermn USETS..........uuuuiiiiriieriieiiiieiiiiiineerieeseeeeeseeeseeeessssssnnsasnnsees 7
LDR/MDR System Configurations............c..ccecoeerveevcvereesrereeneene. 8
SCPC/FDMA ADPDIOAach.......c.ccvvvvvviieiiiiiiiriiviinieee e veaeee s 8
FDMA/TDM Approach (Double HOp)........coooeeveeeeeennceninninns 9
FDMA/TDM Approach (Multi Carrier Demodulation)... 10

Parallel PrOCESSINGc...viiiiiieiiniiieiiiiniitescnr e ereereesaereesseenens 12

Issues And Concerns in Parallel Processing...............ccccouvuunee.... 13
Chapter II: ALGORITHM ANALYSBISoooiiiiitiiiiiieeeeeeeeeeireeeasseessessessnnnenseesseons 15
Carrier Recovery AlgorithIn............coovviviiieiniiiee o, 16

Timing Recovery Algorithm............occeviiiiiiiiiiiciiee e 20

Data Recovery AlOHtNM............coocvuiiiiiieiciineeeee et ceeeeeeeeeeee s e e 25

MODEM Simulation for Demodulation..............cccccovvveeereeeeeeeennnennn... 26

Chapter IV: THE DEMODULATOR DESIGN METHODOLOGY AND SYSTEM

SIMULATIONcccooteerccnsanarnnonsnssrsssecssossorsasssssassnasesssssssnsessnsssssses cessncsensee 31

Preview to the Design of the Demodulatorcccoevueveeeeeeneennnnn. 31

Design of Demodulation Modules...............coueooviieieeeeeeeeeseeiesnneeenennns 32

Multiplexed Carrier Recovery Module (MCRM).............co.......... 32

MCRM OPperatons..........cccveevveieeieiiieeieeeeeereeevereesseasasees 33

Wordlength of Quantized Samples.............................. 35

Control Circuitry and Data Flow in MCRM.................. 35

Multiplexed RAM Buffer For Samples (MRBS).............c... won....... 38

The Operations of MRBS.............ccccoevviviiiveee e, 38

Multiplexed Data Recovery Module (MDRM)...........cccovvunenn...... 40

MDRM Operations.........ccccceeervuuviriieecnnereeeeeeceeseeeeeeeensn. 42

Multiplexed Timing Recovery Module (MTRM)cccoeveenn....... 43

Data Operations in MTRM.........cccoooiiiiiiiineieeereeiienenineann. 43

Control CINCUTYcoovnniiereeiiiccc e e 45

Design and Interface of All the Modules...............ccoovvveereeeeoeeeneererannn., 46

Issues In AGS For Reconfigurability............ccccccoeevveerevrnereernnnns 48

Certain System Parameters..............ccveeeeveeiveeinieeeeneeeeeeeseannn 49

Power REQUITEINIENLES.........ccooviiiiiiiiiieeciieceeee et ccteee e e s e reee e eneee s 51

Hardware SImulationcccccoooviiiciiiiiiiiieieceeeeeeeeee e e 52

MCRM SIMUulationccccocceeeiiiriniieniiieeneee e e 53

MRBS SImulationcccocceviiiiinirinieeeece e 54

MDRM SImMulationcccovveienniinrieieiceieieree e seaeeeee s 56

MTRM SImMulationccceveieininieiiiniiieeie e 57

Chapter V:

Chapter VI:

Appendix A:

Appendix B:

Appendix C:

Appendix D:

Appendix E:

Appendix F:

Appendix G:

Appendix H:

System SImulationccccceviiiiiriiiiiniirr e 58

A HYPERCUBE IMPLEMENTATION FOR SCPC/FDMA VOICE

CHANNELS.......ccoeetectarcersossesseesssssasesssescssessosssssssnsssreasssssarssesssssssnsasssssss 80
MappINg SIAtEEY.ouueiiiiicecece i eetreerereee et seareesesesrassrnrasnnaes 61
Algorithm DIvVISION...........ceiiiiiiiiiiiiiiiiinicte e e, 61
MOAELL.....ce e ettt ettt e e e vretereeseae e s 63
MOAEI-IL......ceeeeieciiirteeeae e et st ree e et eesenesesnsennssnnssnnsssesnsennns 66
SImMulation of MOAEIS..........cooovviivmeirieinieii ettt s eereeseeeaeeeaaeeaeeanaaes 67
CONCLUSION AND FUTURE RESEARCH v 73
CONCIUSIONL ...ccevuiiiiiiieeiie i ceteeeteeaseennaeserssssessssssessssssesssnssnassesnnsssennnnannns 73
FUUIE RESCATCH......cuvuiiriiieriiieieeiiietieieisiretetinssteenssosnssesssssnsesnnsssennsenns 73
SIMULATION OF THE DEMODULATION ALGORITHMS IN A
QPSK MODEMccovtiiiiiiiiiiiiiinnnesrrecsersssessimsresnseessssossanssessosseenssensesnnss 75
PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF
SAMPLES IN THE HARDWARE DESIGN OF MCRM.......c.cvecvivevenreeneeens 87
PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF
SAMPLES IN THE HARDWARE DESIGN OF MRBS......ccctiteeiineinirennrens 104
PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF
SAMPLES IN THE HARDWARE DESIGN OF MDRM.......ccccevveevnennnsnn 114
PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF
SAMPLES IN THE HARDWARE DESIGN OF MTRM.......cccccvvvvvrevnnannnn, 123
PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF
SAMPLES IN THE HARDWARE INTERFACE........ccocoitueiiiinersesneenennsens 138
A PROGRAM FOR THE MAPPING OF TWO CHANNELS ON A BINARY
HYPERCUBE FOR MODEL-L.....ccccoottutiirnniereeerniieermaiemsnnisesessossnnsseennns 155
A PROGRAM FOR LOAD BALANCED PROCESSING OF TWO CHANNELS
ON A BINARY HYPERCUBE FORMODELAIcccuovveeiiiiieiiieeeneeseneaennns 160
.. 166
\'

l\

1.1
2.1
3.1
3.2
33

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
4.1
4.2
4.3
4.4
4.5
5.1
52

5.3

LIST OF FIGURES

FDMA/TDM SYSteI.......c.couimiiiiiineiiereetent et ee e e e ees oo 3
SCPC/FDMA Double HOP SChEE..............ccoovveeeeeeieeeeeeer oo oo 10
QPSK DemnOAUIALOT.cooeeueniitiiiieeeee et oo 16
Biased Carrier Phase ESHMAON.cccouiuiveeeieeeeneenreeeeeeeoeeeeeooeooeoe 17
Carrier Recovery Algorithm FIowchart.............cocovveeeceveeereneneenseeseeeeeesooo 18
Timing Recovery MeChaniSINL...........cocueveeienuieeiiieccteneeeeeee e oo 21
Timing Error ESHMAtON.......c..civiriirienieitieee et eeeeee e 22
Timing Recovery Algorithm Flowchart..............ooouveivveivveeeeeiiseeoee oo 23
Various Sampling INSLanNCeS...........ccocecveruerverreeiveiiieeeeseeeeresese s 24
Data Demodulation SChemie.............covuivuiierieniinieiieeee e 25
Software Model for the Simulation of MODEM............c..covvoeovveooooo o 26
Signal Output from the ModUIAtOL................covveeeeeeereerereeeeeeees oo 28
Phase Jitter Introduced by Atmospheric Disturbances..............ooveovvoovvieonn. 28
Phase Signal at the Input of the Demodulator.................oooovvuveeooeoo 29
Phase Estimation for Extraction of Phase Jitter...........c..cvvevvoeeeoeeooooo 29
Output of the Demodulator............c..ceeveuiiirieiieceeeeeiee oo 29
Comparison of the Input and the Qutput Bit Streams................ooovooeoovoennn.. 30
Multiplexed Carrier Recovery Module (MCRM)...........ccooovievoomeoiooeoeoeo 34
Multiplexed RAM Buffer for Samples (MRBS).............oovovuvoveeeoeeeoooooooeeo 39
Multiplexed Data Recovery Module (MDRM)............ccoocoovevveeieieeooesoooeooe 41
Multiplexed Timing Recovery Module (MTRM)............covooveemoeeeoooeooeooeon 44
PRODEM......couotiiiiiitiitii ettt eeseentesis et ese e e et saeee e e e et e sess s e e e e 47
PEM Configurations for a HyPercube...............ccooveeeeeeoeeeeiseeseseoeoesooeoso 61
Parallel-Pipeline Splits of an AlGOrithm..............cccoeeeereeieeieeeseo e 62
Mapping Of MOdelL-L..........ccooiiiiiienieeeeeecec et oo 64
vi

5.4

5.5

5.6

5.7

5.8

59

5.10

Hypercube Configuration for Model-L.........c.ccccconiniii 64
Data Flow for Model-L......cooniiiiiiiririine it eevreere s se i e ee s eaerseseeras 64
Mapping of Model-Il.....ciiiiiiimiiiiiirrcree et e 67
Data Flow for MOAel-IL........oiiiiiiiiiimrinrereciimenciesissiniii e st bt essanranasannsaesn 67
Simulation Flowchart for Model-1 and Model-IL.........cccovviiiimiiinininiiniennnnnnn, 69

Performance Of MOAel-L........cccccriiieiiriiiimiiiiiiriiiiccinrraie s serantnnnnsensansanseserenaee 70
Performance Enhancement with Load Balancing.............cccoovivvnineinnnnennnnnnna, 70

vii

2.1

4.1

42

4.3

4.4

4.5

4.6

4.7

4.8

49

4.10

4.11

4.12

5.1

5.2

53
54

LIST OF TABLES

Some Fields That Need Parallel Processing............ccoevveiiivinniiiinniniiiiineiinnesninenns 13
Logic for Accumulation RAM........cocooiiiiiiiiiiinniiiii e 36
Logic for Storage RAM..........cccoovuererrirccreerrerrairrecassreeseesinrieeesannnnsensesasssnnees 37
Logic for TIMINE RAM.......ccoooiiiiiiiiiiiiiiiiiniiiiniciesionneieneessierreeeessassassnserneessasens 45
Several Bit Rate APPHCAIONS.coovviiiiiiieriiiiiiinrereeenieiiere e s e reercsieseesennnnans 49
Some SyStem ParameterS.uicoiiiiireiiriencieninceiereeeeeeireetet s sessssaeanenunnannss 50
Power Rating of Units Used in the Design.........cc.ccoveiiiiiiiiiiiviniiiiciiere v, 51
Total Number of Units Used in the DesigrL..........c.ccocvvmuemmmmrieeereeeneenrerenenrannnnnns 51
Total Power Requirement of the Modules............cc.ccooiiiiiiiiiiniciiiireiieceeereenneinne. 51
Operations of MCRM... ... crcccerreereree e e cbe e bnrtraresr e aeaseeesseeess 54
Operations Of MRBS..........c..cvueumeeemreterersrersantismnsressessimmmsmsessiseessssssesesessrmes 55
Operations of MDRM.........cccivcuiiiiiuireieeinitneesesinieereeessinsessesneesesessesssanesssnsnnees 56
Operations of MTRM.......ccccieiiiiiiiieeieiniiieeeessecensseeeasseeessrensrasessessssnraraeseassssssns 57
List of Operations for Demodulation............c.cceuuirerieeieciimeiniceeeriiii e 63
Task Assignment for Model-L............ccccooieiiiimiiiiininiiiiineeeriiiri e e eeee e 65
Task Assignment for Model-IL.............ureeeiiiiiiiireiiereceeieeeeieerersreseseeesseneessens 68
Floating Point Operations for Model-I and Model-Il............cccovvverirninnrnenennnnns 70

viii

—_—

Chapter I

INTRODUCTION

For reasons of flexibility and economy, digital implementation of the signal
processing hardware on board the communication satellites is the current trend. This
is in contrast to the past when analog techniques and devices had been employed for
the transmission of data. The analog devices were bulky, occupied large volume and
consumed a large amount of power. There are several schemes for digital transmission
of information through the satellites. The adoption of a particular scheme of
transmission is based on the priority and importance given to some of the parameters
involved in a transmission scheme. The advances in digital technology for the satellite
communications aims at incorporating efficient schemes of transmission. It also
aims at processing a large number of channels yet reducing power and weight
requirements.

Depending on the bit rate requirement the users are classified into low, medium
and high data rate users. Low and medium data rate users can use small earth stations
with reduced costs and can ideally use the Single Channel Per Carrier /Frequency
Division Multiple Access (SCPC/FDMA) scheme of transmission on the uplink and
Time Division Multiplexing (TDM) on the downlink. The Time Division Multiple
Access (TDMA) scheme appears to be more attractive for high data rate users. Because of
a single carrier in TDMA the high power amplifier can operate in saturation. In
addition, problems due to intermodulation distortion can also be eliminated. It is also
possible te use several combinations of FDMA and TDMA schemes for transmitting the
channel information via the satellite. One of the hybrid schemes that is gaining

popularity is the Multi-Frequency Time Division Multiplexing Access (MF-TDMA).

One of the most economical schemes of transmission for low data rate users is
SCPC/FDMA on the uplink and TDM on the down link. There are several advantages in
using such a scheme for low data rate users, some of them being:

- Minimizes Effective Isotropic Radiated Power (EIRP) requirements.

- Eliminates ground network symbol synchronization.

- Makes full use of on board Traveling Wave Tube Amplifier (TWTA) power.

- Overcomes double hop which needs a hub station and introduces delay

unacceptable for interactive voice and video communications.

-Reduces earth station complexity.

Despite these advantages, the major disadvantage involved in such a scheme of
transmission is the task of regenerating the transmitted data on board the satellite.
This needs extensive signal processing on board the satellite. In addition, the power
and hardware requirements may be very large for the desired high throughput.

The FDMA/TDM system conventionally consists of a Transmultiplexer
(TMUX), a bank of demodulators, baseband switch matrix, TDM multiplexer and a
modulator as shown in Figure 1.1. The FDMA signal is first down convertgd from RF to
IF. This wideband signal is downconverted and passed through an anti-allasing filter,
which is required before digitization. The signal is then sampled by an A/D converter.
The digital signal at the output of the sampler contains information of all the SCPC
carriers that need to be separated. The SCPC/FDMA channels are input to the
Transmultiplexer (TMUX)} which filters, separates and brings the channels to
baseband. The bank of parallel demodulators extract the digital data for all the
channels. This is followed by a baseband switch matrix which routes digital data to
each of the channels. The channel data are then buffered into contiguous blocks,
multiplexed, remodulated and transmitted back to the earth stations on a TDM down

link.

The On Board Processing (OBP) system is called a Multi Carrier Demodulator

(MCD). An MCD has two operations, namely, demultiplexing and demodulating.

Multl Carrier Demodulator

Transmultiplexer

I .
4 TDM
Signal

FDMA
Signal

Bank of
Demodulators

Antt- Allasing
A/D
Filter Bank
Modulator

Multiplexer

Filter

TOM

Bascband Switch

Matrix .,

FFT Processor

Oscillator

Figure 1.1: FDMA/TDM System

For the SCPC /FDMA scheme, much work has been done in the design of a Multi Carrier
Demodulator (MCD) [1-11]. Several demodulators comprise the demodulating part of
the MCD. Since a separate demodulator is suggested for each channel, the hardware
requirements are severe. Hence, it is difficult to implement the MCD with reduced size

and power requirements.

1.1 Proposed Research

A single hardware design is proposed for demodulating several channels
simultaneously. The goal is to achieve high performance by designing a dedicated
architecture. From a satellite point of view, reduced hardware and power requirements

are ideal for On Board Processing. This research project presents an implementation

of a single shared device to demodulate all the demultiplexed SCPC/FDMA channels.
This concept is realized by incorporating the parallel, pipeline and time multiplexing
techniques in the design. The time multiplexing saves on the hardware and the
parallel-pipelined architecture provides the required speed. Because of the use of a
single shared device, large savings in size and power are obtained while the
architecture design and the avaflability of high speed VLSI chips allows the required
throughput to be maintained. Flexibility is provided to process varying number of
channels as long as it is not above the upper limit of the hardware design. Also a
scheme for varying bit rate voice or data channels is given. It provides the flexibility to
the user in terms of choosing between a higher number of low bit rate channels or a
lower number of high bit rate channels. Hence this design is given the acronym
PRODEM (PROgrammable DEModulator). The design is optimized for maintaining
maximum bit rate. Also, if higher throughput is desired, several PRODEMSs can be
suitably used in parallel.

Simulations are carried out at different stages of this design. The demodulation
algorithms are simulated as part of a MODEM. The input and the output bit streams
of the MODEM are observed to check the accuracy of the operations. This simulation is
done using a signal processing CASE (Computer Aided Software Engineering) tool
called BOSS (Block Oriented System Simulator). Also, the hardware design is
simulated with the data flow among the units and the modules. The control circuitry
and interface of the modules are also simulated.

Also, speedup in the demodulation algorithm is easily achieved by using
several processors of a multiprocessor system. One such multiprocessor sytem is a
hypercube. A hypercube with n dimensions has 21 processors. For example, the
demodulation algorithm is divided into smaller units and is mapped onto a three
dimensional hypercube consisting of eight processors. Each processor operates only on

its assigned task. This enhances the performance of the system by providing

o

considerable speedup. The creation and assignment of the tasks to the processors plays
a crucial role in the performance of the hypercubes.

A hypercube architecture has fewer interprocessor communications and data
transfer problems as compared to a time shared bus architecture. Also, in its class of
multiprocessors, it is a tradeoff between its equivalent ring connected and completely
connected topologies. Hence it is chosen for the simulation of our demodulation models
for several channels. The algorithm models are simulated in Ada because it is easy to
implement the parameters of a hypercube. Note that this apprbach is considered
primarily for providing a speedup. Since the hypercubes have severe power and
hardware requirements, it is not a solution for On Board Processing. However, this
approach could be used for high speed demodulation needs of the earth stations. Using
TDM on the down link will require all recetving earth stations to have relatively high
speed demodulating requirements, hence this multiprocessor approach could be an
attractive solution to the high speed requirement of the earth stations.

In Chapter 2, some of the existing satellite access techniques are reviewed and
an overview of the parallel processing schemes is provided. Chapter 3 deals with the
analysis of the carrler, timing and data recovery algorithms of the Multi Carrier
Demodulator. Simulation of the algorithms is provided in this chapter. Chapter 4 deals
with the hardware design from an on board processing stand point. The simulation of
the hardware design is also discussed. The hypercube models and simulation of the
demodulation algorithms for these models are provided in Chapter 5. Conclusions and

future work are discussed in Chapter 6.

Chapter II

SYSTEM BACKGROUND AND PARALLEL PROCESSING OVERVIEW

2.1 Multiple Access Techniques

The users can access the satellite by multiplexing the data in frequency, time, or
in code. Multiple access schemes have been used effectively and efficiently in the
satellites. Some of the commonly used schemes are Frequency Division Multiple
Access (FDMA), Time Division Multiple Access (TDMA), and Code Division Multiple
Access (CDMA). In FDMA, each uplink RF carrier occupies a defined frequency slot and
is assigned a specific bandwidth with a small guard band for separation of one carrier
from another. The satellite receives all the carriers in its bandwidth, amplifies them
and retransmits them back to the earth. The receiving station selects the desired carrier
that contains its relevant message by appropriately choosing its allotted frequency.
The main advantage of the FDMA access is that network synchronization is not
required. It is used mostly by low data rate users.

The TDMA scheme uses a single carrier which is shared by all the users in time.
It operates in burst mode such that the transmissions from all stations arrive at the
satellite transponder successively. At any time each user has access to the entire
transponder. The transmission timings of various bursts are carefully synchronized so
that the bursts arriving at the satellite transponder from a group of users in the
network are closely spaced in time but do not overlap. The satellite transponder
receives one burst at a time, amplifies it and retransmits it back to the earth. Every
earth station in the network will receive all the bursts of transmission from all the
stations but selects only those that are relevant. A distinct advantage of TDMA over
FDMA is that it uses a single carrier which avoids intermodulation distortion. Thus the
satellite amplifier can operate in saturation to get the maximum output power.

However, this scheme requires network synchronization.

6

The CDMA scheme has all uplink signals occupying the full frequency
allocation at the same time. Each channel has its own pseudo-random code which
distinguishes it from the other channels. The codes are chosen from an orthogonal set
and are used to separate the desired signals. This scheme is primarily used in military
applications for security purposes. The commercial applications of CDMA are
beginning to emerge for low speed data communications. These schemes and several

other hybrid schemes are discussed in detail in [15].

2.2 Satellite System Users

The various satellite users can be divided into three main categories depending
on the bit rate they need for the transmission. They are the low, medium and high data
rate users as mentioned in [9].

1. Low Data Rate (LDR) users require one telephone channel or less (16/32 Kbps).
LDR can be arbitrarily classified as any traffic having bit rate in the range of 1 Kbps to
100 Kbps. Under this category, signals can be considered carrying "telematic” services,
as Teletex, Videotex, Low/Medium Speed Facsimile, Slow-Scan Video, wideband PCM
"toll quality” telephony (64 Kbps) or reduced rate "talk quality” PCM telephony (less
than 10 Kbps).

2. Medium Data Rate (MDR) users require up to 10 Mbps (e.g., digital T1 signals
at 1.544 Mbps or PCM hierrarchic levels as 2.048 Mbps or 8.448 Mbps. High speed
Facsimile, Videophone, and Video conference are the main applications for this bit
rate range.

3. High Data Rate (HDR) users requirement ranges from 10 Mbps to 150/200
Mbps (or more) which is considered today an upper practical limit to the per-
transponder capacity. This range of data rate is essentially devoted to multiplexed voice
circuitsdigital television or HDTV planned for broadband ISDN at 155 Mbps. Each high

data rate user may require one or more transponders. A Time Division Multiple Access

(TDMA) system or a single access may be used for such HDR systems, needing no
particular improvement of today's technology. On the other hand, LDR and MDR
signals may be processed in several different ways to reduce the complexity of the user
terminal or on board hardware. It could also be improved from a speed and power
requirement view point. In this research effort, we shall be concerned with the

implementation of LDR/MDR system design only.

2.2.1 LDR/MDR System Configurations
2.2.1.1 SCPC/FDMA Approach

The use of Single Channel Per Carrier (SCPC) technique using a Frequency
Division Multiple Access (FDMA) on the uplink and the downlink offers the desirable
feature to design the earth station EIRP for the user capacity. However, a major problem
with the FDMA systems is the presence of intermodulation products in the composite
signal bandwidth generated by the amplification of multiple carriers by a common
Traveling Wave Tube Amplifier (TWTA). The TWTA in the satellite transponder exhibits
both amplitude and phase nonlinearity. As the number of carriers increases, it is
necessary to operate the TWTA near saturation in order to supply the required power
per carrier to reduce the effect of downlink thermal noise. But near saturation, the
input/output amplitude transfer characteristic of the TWTA is highly nonlinear.
Consequently the level of intermodulation products is increased, which effects the
overall performance. Thus the TWTA must be backed off from saturation and operated
in the quasi-linear mode to obtain an acceptable value of the carrier-to-
intermodulation product ratios.

At the optimum backoff (up to 6 dB at the TWTA output) the reduction of the
satellite EIRP and the residual intermodulation products reduce the downlink carrier-
to-noise ratio (C/N or Eb/No), typically 2-5 dB with respect to single carrier operation.

It is possible to reduce the average output power by 50% or more to reduce the

intermodulation products to an acceptable level with a high density of input signals.
However this will cause problems at the receiver, because the downlink signal with
reduced carrier-to-noise ratio cannot be received by earth stations with small

antennae.

2.2.1.2 FDMA/TDMA Approach (Double Hop)

The best features of both the FDMA and the TDMA could be obtained using a
modulation conversion on board a regenerative satellite or on ground. For modulation
conversion on ground the small earth stations are connected using a double hop
through a large Central Processing Station (CPS). In such a configuration, the first hop
is from the small capacity stations to a large CPS via the satellite. It uses SCPC/FDMA
scheme of transmission as shown in Figure 2.1. The CPS on the ground demodulates
the recetved SCPC signals and remodulates on a single carrier and retransmits back to
the satellite. This is the second hop from the CPS to the small capacity users on a TDMA
format. Therefore the transmitting and receiving stations are linked by the satellite.
The CPS has a forward link in FDMA and the return link in TDMA.

By using this scheme the users access the satellite freely by SCPC/FDMA uplink.
The low data rate users are collectively retransmitted as high data rate using the TDMA
scheme by the CPS. An advantage of this scheme is the reduction of cost for low data
rate users. For these low bit rate users, the cost involved in using TDMA in the uplink
is impractical. In this scheme, this is avoided by using FDMA on the uplink and by a
FDMA/TDMA conversion using a CPS. Therefore, the cost involved in using TDMA can
be distributed among all its users. Yet another advantage is that, due to the increased
dimension of the CPS antenna, the satellite can transmit the SCPC signals at a lower
carrier power. Due to this fact the HPA power on board and the satellite EIRP are

reduced. Therefore the RF power usage on the satellite is minimized.

10

In the second hop, the TDMA transmission can achieve efficiencies in satellite
power utilization of 90% or more compared to the 50% loss in the satellite average
output power that is typical of FDMA operation. A disadvantage in this scheme is an
introduction of excessive delays due to the double transmission. Note that for most
applications of voice and interactive video transmission this delay is not acceptable.
Also the net throughput of the satellite is reduced as it is accessed twice for the

transmission of the same data.

SATELLITE

O o

T
TDMA
FDM ;,A FDMA
A

FDMA

TDMA
FDMA
y
CENTRAL
PROCESSING
STATION

Figure 2.1: SCPC/FDMA Double Hop Scheme

2.2.1.3 FDMA/TDM Approach (Multi Carrier Demodulation)
The disadvantages of the double hop scheme can be overcome if the burden of the

processing done by the CPS is transferred on board the satellite. The trend has been to

11

use regenerative repeaters for digital transmission. In a regenerating transponder the
digital signal is demodulated and remodulated within the transponder itself. This
scheme separates the uplink and the downlink into independent paths. This will
require baseband processing and frequency conversion of the modulation on board the
satellite. Low power, narrow band, digitally modulated carriers operating on a
frequency division basis on the uplink could be demodulated on board the satellite. The
individual bit streams can then be combined on a down link using Time Division
Multiplexing (TDM). Also the continuous wave transmission in the FDMA mode has its
advantages. Due to the continuous transmission of the RF power, the demodulators on
board do not have to acquire symbol timing and phase recovery every time data are
transmitted. Instead the demodulators have to track the symbol timing and the carrier
phase to keep it from drifting. Thus the bit energy requirement is reduced. Due to this
reason the earth stations can transmit signals with a low C/N (yet it will be sufficient
for the accurate operation of the demodulators). Therefore the earth station EIRP, the
HPA power and the antenna size are reduced. At the receiving end, the signals recetved
are in a TDM mode. The single carrier characteristic of the TDM mode allows satellite
transponder operation in saturation. This results in an efficient utﬂléatlon of the
onboard RF transmit power.

Thus in satellite communication systems incorporating small earth stations,
the use of SCPC/FDMA on the uplink, regeneration and remodulation of the user data
on board the satellite and use of TDM on the downlink are significantly effective in
improving the satellite transponder utilization and reducing the required EIRP in both
the satellites and earth stations.

As discussed, it is observed that the system complexity on board using
multicarrier demodulation makes such a regenerative system rather attractive and
flexible. However it is not easy to implement on board MCD with low power and reduced

hardware yet provide the system with a computational efficiency. Some investigations

12

for on board processing have been carried out in various technologies such as Surface
Acoustic Waves (SAW), acousto-optical techniques and baseband digital signal
processing [9]. In this research, an efficient design is proposed using the baseband
digital signal processing scheme. This design provides a low power and hardware

complexity solution to the on board conversion of the FDMA/TDM system.

2.3 Parallel Processing

Advances in many fields had their impact on the design and development of
advanced computing technologies. Some technologies need millions of instructions to
be computed in a fraction of time. This relates to providing the user with a machine
that supports high Million Instructions Per Second (MIPS) . There are some real-time
applications that need this speed for an accurate operation of the systemn. Others need
this speed for running the simulations that ordinarily take hours and days to provide
results. This could be a waste of valuable research time. Yet others need this
computational power simply because the computation time is more than the time
allowed for computations. Parallel processing aims at providing maximum possible
speedup to the end user. Some of the applications which use parallel processing are
given in Table 2.1. A comprehensive study of these applications can be found in [26].
Any field that needs a high speed computation can find a solution in parallel
processing.

Parallel processing is a means of computing using several processors or
processing units. Its objective is centered around increasing the speed of computation
which is achieved by using multiple units. The algorithm needing a speed up is
appropriately partitioned and mapped onto these multiple units that operate either
simultaneously or in a pipeline. This is achieved by observing the partitions of the
algorithms which can be done simultaneously and those which can be done in

overlapped time intervals. The former is called parallelism and the latter is called

13

pipelining. In contrast to sequential processing, parallel processing demands
concurrent execution of many events in the system. Special purpose dedicated
hardware, advanced computer architectures, and supercomputers are based on the
principles involved in parallel processing. The application of these architectures and
algorithms [24-30] need the underlying principles involved in hardware and software
structures and close interactions between algorithms and optimum allocation of the

machine resources in solving large scale computing programs.

Table 2.1: Some Fields That Need Parallel Processing

Modeling and Simulation
Weather forecasting
Oceanography and astrophysics
Socioeconomics and government use

Engineering design and automation
Finite element analysis
Computational aerodynamics
Artificial Intelligence and automation
Remote sensing applications
Image and signal processing
Satellite communications

Energy resources exploration
Seismic exploration
Reservoir modelling
Plasma fusion power
Nuclear reactor safety

Medical, military and basic research
Computer Assisted Tomography (CAT scan)
Genetic engineering
Weapon research and defense

Space research
Basic research problems

2.3.1 Issues and Concerns in Parallel /Pipeline Processing

Parallel processing of the algorithms can be achieved in many cases where the
algorithms can be divided in parallel. The problem is to identify the portions of the
algorithm that can efficiently use more than one processor or a hardware unit. The

effectiveness comes from the identification of the problem that lends itself to the

14

parallelism, allocation of the algorithm, and mapping it on to a suitable architecture.
The algorithms could be suitably mapped onto the available architectures by
analyzing the characteristics of the algorithms and considering the parameters that
effect the performance of the mapped algorithms on the architectures. One has to
exploit the organization of the memory and architecture to attain a high speed as
compared to a sequential solution of the same.

If the algorithm cannot be broken down into parallel units, it can be divided
into units which are pipelined. This needs suitable interprocessor éommunicatlon and
synchronization techniques. Interprocessor communication pertains to an accurate
transfer of the data from one processor to another. Based on the architectures either it
is very simple to implement as in a hypercube or is complicated and affects the
performance if the architecture is a time-shared common bus architecture.
Synchronization is achieved mainly for processors to operate in conjunction with one
another. The processors operate in such a manner that if any processor completes its
job earlier than the others, it waits for others to come to its level so as to ensure
accurate operation on the shared data. This ensures a synchronized performance of all
the processors in the system. In a hardware architecture, synchronization will relate to
transfer of data at the right instants of time. It may also relate to interfacing several

interacting modules.

15

Chapter I

ALGORITHM ANALYSIS

Demodulation algorithms pertain to the recovery of carrier, data and timing.
The algorithms are analyzed from a view point of providing implementations for a
suitable hardware design. The analysis in terms of the interdependency of the data flow
in the algorithms 1is noted. This study aims at developing a dedicated architecture. It is
achieved by performing the data dependency analysis on the algorithm. The algorithm
is examined for data dependencies and is appropriately partitioned. The underlying
principle is to map the independent sections of the algorithm onto computational units
operating in parallel and the dependent sections onto units operating in a pipeline [17-
18]. This is implemented within the units of the modules and also among the modules.

A digital implementation of a demodulator consists of several modules which
operate in cooperation with each other. A Quadrature Phase Shift Keying (QPSK)
modulation scheme is used in this demodulator. A block diagram of a QPSK
demodulator with its interfacing modules is shown in Figure 3.1. The interpolator
provides samples of the incoming symbols at the precise rate of two samples per
symbol, and at the precise positions of the symbol which are at its peak and crossover
points. The interpolator is needed to properly sample the symbols needed at the input
of the demodulator. This is because the outputs from the demultiplexer are not suitable
for the demodulator where a fixed integer number of samples are required. The carrier
recovery module estimates the carrier phase offset. This phase offset is introduced in
the system due to the atmospheric disturbances, Doppler shift, etc. The clock recovery
module extracts the correction for the timing information of the channels. This is
required to ensure accurate sampling instances at the maximum eye opening positions.

There are several algorithms for the recovery of carrier and clock. The non-linear

16

estimation technique proposed by Viterbi and Viterbi [12] for the carrier recovery and
the clock estimation method proposed by Gardner [13] have been chosen in our
implementation. The carrier recovery algorithm provides a good estimate of the phase
and is not very sensitive to the finite arithmetic implementation which has a bearing
on the word-length. It requires a short acquisition time, and it does not have many
feedback loops which are characteristic of certain other algorithms. These attractive
features make it suitable for the joint recovery of all the channels. The clock recovery
algorithm is independent of the carrier phase and also offers some attractive features
for efficient implementation for multiple channels. Due to the atmospheric
disturbances, propagation delays and the Doppler shift effects present in satellite

communication, it is essential to continuously track the phase and timing estimates.

!

TIMING DATA
RECOVERY RECOVERY -

L |

Fgure 3.1: @QPSK Demodulator

3.1 Carrier Recovery Algorithm
The carrier recovery is based on the implementation of the Viterbi algorithm in

the proposed MCD structure by E. Del Re and R. Fantacci [6]. The carrier phase of the

17

25 N/2A0T

bias (rad)
'S
[]
S
P

2N

Fgure 3.2: Bliased Carrier Phase Estimation

incoming samples can be estimated continuously or periodically. The continuous
estimate is obviously computation-intensive but is an unbiased estimate.
Alternatively, an estimate can be made at the mid-interval symbol with N symbols
preceding it and N symbols succeeding it where N is the number of contiguous symbols
of the same user. The estimation interval is then 2N+1. This symmetric estimation of
the carrier phase is a biased estimate. This bias depends on the position of the symbol
from the mid-interval symbol as shown in Figure 3.2. The phase is unbiased for the
mid-interval symbol and is a linear function of the position of the symbols away from

it. This bias s maximum for the symbols at the end points of the estimation interval.

The operations that are performed in the carrier recovery algorithm are given
in this section. The flowchart for the carrier recovery algorithm is as shown in Figure
3.3. Let T and Te be the duration of the symbol and the estimation intervals,

respectively. By our earlier discussion, these parameters are related by the equation

18

- N
In Iy ! z Lo ——
> IFTTS " sin ()
2 n=-N
F 1/mtan” ()
£
~ N } cos () |—o—
g @n 1 On
Qn ’ "
> 2N+ 1
n=-N

Fgure 3.3: Carrler Recovery Algorithm Flowchart

(2N+1)T = Te. The inputs to the phase recovery are the in-phase and the quadrature-
phase samples. Let the complex sample input be of the form:

X =In+)Qn (3.1)
For PSK modulation,

In = Ap cosoc - By sinac (3.2)
Gn =An singc + By, cosec (3.3)
where oc is the carrier phase and Ap and By, are the in-phase and quadrature-phase
sampled data waveforms. These equations can also be written as:

In =Rp cos(x(2k+1)/m + ¢) = Rp cos o

On = Ry, sin(n(2k+1)/m + 6¢) = Rpsinep

where Ry = \/An2+Bn2

on = n{2k+1)/m + o¢ (3.4

m = number of phases

19

Note that Ry, is also equal to ¥ In 2 + @n2 and en is tan-1(Qn/In). Equation (3.1) can also
be written in the polar form as:
X (n) = Ry eln. (3.5)
A non-linear transformation is performed to eliminate the modulation information
from op. The new transformed vector is given by:
X'(n) =F(R,).exp (jma,).
= F(R).exp (jme,,). from (3.4)
The function F is an arbitrary non-linear operator. The non-linear operation is
used to remove the modulation information from the signal. The next step performed in
the recovery of the carrier phase is to convert the polar form back to the rectangular
form. This gives:
F(R)).exp (jme)=1,"+jQn' (3.6)
To obtain an estimate ac of @, over the estimation interval Te, mean vector values are
needed. These are obtained by:
I = (1/(2N+1))ZL) n=-Nton=N (3.7)
Q" =(1/(2N+1))T on n=-Nton=N | (3.8)
The phase estimate is obtained as
8 = 1/mtan’! (@n"/In) (3.9
The operations performed for obtaining I ' and Q' are rectangular to polar
transformation, a phase multiplication by m, an arbitrary non-linear transformation
on R, and finally a polar to rectangular transformation. In the hardware
implementation, the values of I and Qp' can be preprogrammed and stored in a look

up table for any given I, and Q, values.

All the samples present in the estimation interval are summed and then

averaged. The mean vector values In" and Qn" are obtained. Corresponding to these

values, a 1/m tan"1 operation obtains the phase offset. The sine and cosine values of

20

the phase output are then computed. These values are output from this block and are
utilized appropriately by the data recovery module. Note that multiplying the phase by
m and finally dividing the tan"! function by m, gives rise to a m fold ambiguity in the
phase estimate. However, in a practical situation this problem is solved by coding the
data transitions rather than the data themselves (differential coding) and by
performing differential decoding at the receiver. It could also be solved by considering

all the positive and negative values of In" and Qn" and creating a look up table for all

these combinations.

3.2 Timing Recovery Algorithm

The clock recovery module extracts the timing information for each channel. A
general structure of the timing recovery mechanism is shown in Figure 3.4. Samples
from the I and Q channels are input to the timing error detector. The timing error
information is used to update the timing instances by the timing error corrector. The
output of the timing error corrector drives the interpolator. After this feedback input

the interpolator outputs correctly sampled data. Figure 3.5 shows typical sample

points used in the estimation of the timing error information. Samples I and Ip-] are
at the peak points and In.1/2 is at the cross over point. A transition between the
samples should have a zero mid-way sample. A non-zero value indicates an error
which has to be corrected. For this purpose, the successive samples are compared. The
difference between the peak values will provide the slope information. The product of
the slope information and the midway sample provides the timing information. A
timing correction is provided only when a transition exists. The timing error Ty for the
I - channel is:
Ty=[In-1/2 {In - In-1}1 (3.10)
The flowchart of the algorithm is shown in Figure 3.6. Clearly the amplitude of

the mid sample In.1/2 is proportional to the timing error Tj. The difference of the peak

21

|

Timing

to
decision
process

data
filter
local
carrier
dats
:
filter
Un

fnput
—™ 1 interpolator
signal
Figure 3.4:

[}

error
corrector

Timing Recovery Mechanism

Timing error

detector

sample values {In - In.1} magnifies the amplitude of the sample at the crossover
point. In fact, instead of using the actual values of the peak samples, their sign values
can also be used. This will also simplify hardware implementation. Note that when
there is no transition between the adjacent samples, the timing error is zero. Also the
sign of the timing error is used to determine the direction of the timing correction. For

a general PSK modulation, samples from both the I and Q channels are used to obtain

the timing error which is given by
Un = Ti + Tq
=ln-1/2{In-In-1}+9n-1/2.{9On - On-1}

The cumulative timing error is gtven by

(3.11)

22

—_— I

csasecesvsconnarnsennanateasnns

q¢@—>

ssstccencncssnscrrvromnal

—
=1
'
—

In-172 \

Figure 3.5: Timing Error Estimation

Wn =Wn-1+Un (3.12)
The error value is used by the timing error corrector to obtain the correct
updated timing. This updated output is needed by the interpolator filter for the
correction of the sampling instances. The correction keeps the timing instances free of
any lead-lag erroneous sampling. The various possible combinations of sampling are
shown in Figure 3.7. The ideal sampling would be to obtain the optimum peak and the

zero-crossing values of the samples.

23

Y

a=3ign(1n)

Y

b=sign (Ina1)

yes
a=b
Y
no
‘ Ti =0
Ti=In.1/2 X(a-b) no control
stop

Figure 3.6: Timing Recovery Algorithm Flowchart

24

optimum peak value sampling

A\

-1

" N
[R

optimun cross-over sampling

sampling in lag phase

Becece
I

sampling in lead phase

Fgure 3.7: Various Sampling Instances

25

v

sign A

&gl

1
b -
v
phase .
91 astimate v
v
i
2N.]
p41]2 > - - -
4 laeosigogaxui‘ A,
p—1j2 Qo5 -1, sind, .i‘
shift register aney

Figure 3.8: Data Demodulation Scheme

‘v

Hen B,

date
R —

3.3 Data Recovery Algorithm

The demodulation process for the samples begins once the phase estimate is

available. The data demodulation scheme is similar to {11} and is shown in Figure 3.8.

A shift register is required to store 2N+1 samples. This is because 2N+1 samples are used

to estimate the phase. During this time, demodulation cannot be carried out. So the

sampled data are buffered. Demodulation can begin only after the phase estimate is

available. This will result in an initial delay of 2N+1 symbols in the demodulation

process. Using equations (3.2) and (3.3) to compute An and Bn shown in Figure 3.8, the

following results are obtained.

A

A, =ljcos B, +Qp snp,

(3.13)

=Ap . cos P¢ cosdc - Bn. sineg cos B¢ + Ap. sin B¢ sinee + By cosac sin B¢

=Ap. cos (8- B)- By sinle, - 8.)
ﬁn =Qp cos 6c -In.sinﬁc

(3.14)

(3.15)

26

=Ap. sinec cos B¢ + Bp. cosae cos B¢ - Ap. coseg sin B¢ + By, sinec sin B¢
=A,,. sin (.- BJ + By,. cos (8- B (3.16)
when ﬁc is the estimate of o,. Equation (3.14) provides a close estimate of the A

symbol and equation (3.16) provides a close estimate of the symbol B ,.

3.4 MODEM Simulation for Demodulation

A simulation of the demodulation algorithms is performed using a CASE tool
called Block Oriented System Simulator (BOSS). The carrler and data algorithms are
verified for a MODEM with a QPSK scheme of modulation as shown in Figure 3.9. The
timing algorithm needed the interpolator algorithms for verification and hence was

not simulated.

- 5
::!.u L 3:; B 2 - L *. v
IPULST ol D> s
ImMIe Ldd:.1) WULTIPATR DOPPLER
CaeeLe
¥

Fgure 3.9: Software Model For The Simulation Of MODEM

Several MODEMs have been simulated with varying parameters in an extensive
study [16]. From this library, a QPSK MODEM fs selected for the purpose of verifying

our algorithms. The MODEM has a random input datum (O or 1) available at every clock

27

cycle generated by the block RAN DATA as shown in Figure 3.9. This is mapped into the
four different constellations of QPSK by the block SIGNAL MAPPER which uses two
inputs to represent any of the four positions. The modulator uses this input to
modulate the input information to the four different phases associated with these
positions. The block PE2* gets an input which is a combination of the modulated phase
and the phase jitter. Th multipath fading channel block is used to generate a phase
disturbance and the const-amp block outputs this signal which has only a varying
phase value. In reality, this is obtained from the disturbance and Doppler shift, etc.
Therefore phase jitter along with the phase of the actual data from the modulator are
input to the phase estimator block. This unit rotates out the modulated phase so that a
phase which is purely related to the disturbance is extracted. It is used by the
demodulator block PEDEM1* to extract the original modulated phase. A reverse
process is done at the recetver to decide on the bits and BER count block checks for the
bit error rate by comparing the input and the output bit streams. The programs written
for the blocks CONST-AMP*, PE2* and PEDEM1* are listed in Appendix A.

Several parts of the MODEM are probed to examine the changes in the signal
during this process. The signal at the output of the modulator block is shown in Figure
3.10. This corresponds to the modulated phase levels. The output of the phase jitter is
shown in Figure 3.11 which is the simulation of the disturbance introduced onto the
signal. The combination of these outputs results in the actual input signal to the
demodulator. This input signal to the demodulator block PEDEM1* is shown in Figure
3.12. The carrier phase is recovered by the PE2* block. It rotates out the modulation and
extracts the carrier phase as shown in Figure 3.13. The demodulator uses this
extracted phase to determine the actual phase levels. These levels correspond to the
original information which has been modulated . The output of the demodulator block
PEDEM1* is shown in Figure 3.14. The input and the output bit streams are shown in

Figure 3.15. It is seen that the two bit streams match very closely and thus the accurate

28

Complex Phase

50.
0.
-50
-100
-150
T T T T T
0. 5O, . 100, 150, 200,

Time (Sec.) X 10%#.3
Figure 3.10: Output Signal From The Modulator

Complex Phase

20,
10.
0.
-10.
-20.
L L L]
0 60 100. 150 200

Time (Sec.) X 10n%.3

Figure 3.11: Phase Jitter Introduced By Atmospheric Disturbances

29

Complex Phase

150. T
100. '
6O.

-50.
-100.
-150.

T
0. _ Bo. 100, " 150. . 200.
Time (Sec.) X 10%=-3
Figure 3.12: Phase Signal At The Input Of The Demodulator

Complex Phase

20.
10.
0.
-10,
-20.
T — . 1 T T T
0. 50. 100. 150, 200

_ Time (Sec.) X 10#%-3
Figure 3.13: Phase Estimation For Extraction Of Phase Jitter

Complex Phase

150. —LJ
100, .
60O,
o |
-50.
-100.
-180. ﬂ
I L D)
0. 0. 100, 150, 200

 Time (Sec.) X 10%e-3

Figure 3.14: Output Of The Demodulator

30

Level
1.0 ﬂn aln m sBemimis " mmln = '1'7 B
0.5
0.0
-0.5 “
-1 ° .L— L e haed d t _u&— e e heed S
! T T T T T T T T Y T T - T T Y T T T T —r T
0. 50. 100, 150, 200,
Time (Sec.) X 10%%-3
Level
1.0 410 NN ulile 1Hih imlil N inks
0.5 u
0.0 *
-0.8 1 l‘ '
_1'0 O | J) - -J __J WU LJ UL Lt LJ U e bd
T L T B L] v L 2 g l' Ll L T L ‘ Ll L ¥ I'ﬁ'
0. §50. 100, 150, 200
Time (Sec.) X 10ows.g
Figure 3.15: Comparison Of The Input And The Output Bit Streams

operation of the demodulation algorithms in a MODEM is verified. The simulation is
test run for about 10,000 bits and the BER is noted. The listing of the programs with

the Bit Error Rate (BER) are given in Appendix A

Chapter IV

THE DEMODULATOR DESIGN METHODOLOGY AND SYSTEM SIMULATION

A hardware design is developed for demodulating several voice
channels pertaining to the SCPC/FDMA system. This design incorporates pipelining
and parallel processing techniques. The implementation of these techniques in the
hardware design increases the performance of the system (22, 23]. The speedup
achieved can then be utilized effectively to process a large number of channels which
are multiplexed. The design attempts to provide a proof-of-concept for processing a

large number of channels.

4.1 Preview To The Design Of The Demodulator

The A/D sampler in Figure 1.1 is used to sample the received FDMA signal. The
signal at the output of the sampler contains information of the N SCPC channels. If
each channel has a uniform spacing of Af, then the combined bandwidth will be F=
NX.Af. The sampler will have to operate at least at the rate of (2F) to accurately retrieve
the channel information. However, if complex sampling is performed, the sampler can
operate at a reduced rate R=(4F). The filter bank and the FFT processor of the
Transmultiplexer (TMUX) and the bank of demodulators need to operate at this rate for
processing the data.

The bank of demodulators operate at the rate at which the samples are input to
each demodulator. Since N demodulators are used corresponding to N channels, each
demodulator operates at a reduced rate given by (NR) time units. This usually does not
keep the hardware units of the demodulator operational at every clock cycle of the
system. The process of keeping the units inactive for several clock cycles results in an

ineffective use of the hardware resources. To overcome this drawback, a single

31

32

hardware device is proposed to demodulate all the channels. The hardware units of this
device will be operational at every clock cycle. The channels will be multiplexed and
share the hardware resources of this device. Hence considerable savings in hardware
and power are achieved by designing this single multiplexed demodulator. Once the
channel information of this device is processed, it will be output at a high speed of R
time units. This high speed output will take NR time units for processing N channels.
This is equivalent to the bank of demodulators which also take NR time units to
process N channels. This is because of the slower processing time of NR time units by

each of the N demodulators.

4.2 Design Of Demodulation Modules

The demodulation process needs to recover the carrier and data from the input
samples corresponding to various channels. Timing recovery is needed for tracking the
positions of the samples and is used by the interpolator. Each of the modules for
carrier, timing and data recovery is designed to operate according to the equations
given in Chapter 3. In this section a multiplexed design for storage, carrier, data and
timing recovery modules s presented. A case study of 800 channels is presented for an

easier understanding of the design.

4.2.1 Multiplexed Carrier Recovery Module (MCRM)

A Multiplexed Carrier Recovery Module (MCRM) is designed to obtain the carrier
phase for each of the channels. Samples of several channels are input serially to this
module. At the same time these samples are also input to the Multiplexed RAM Buffer
for Samples (MRBS). The MRBS stores these samples to be operated on later by the
phase recovered information of the MCRM. The output of the MCRM module will be

needed by the Multiplexed Data Recovery Module (MDRM],

33

4.2.1.1 MCRM Operations

The in-phase and quadrature-phase samples of the channels are input to the
Multiplexed Carrier Recovery Module (MCRM) as shown in Figure 4.1. The input
samples I and Qp are transformed to a vector according to the equations (3.1) and
(3.6) by using a look up table. The pre-programmed values of I’ and Qp' corresponding
to the transformation of the input samples I, and Qp according to equation (3.4} are
stored in the Input ROM (IR). The values of I,' and Q' samples are accurnulated in the
Accumulation RAMs (AR). An Address Generator for Samples (AGS) supplies the
addresses to the AR according to the channel numbers for storing the values of I’ and
On'. The samples of various channels are stored in their allotted location of the RAMs.
The successive samples over an interval length of 2N (where 2N is the number of
samples considered for the accumulation of samples for each channel) are
accumulated for each of the channels. The accumulated result needs to be divided by 2N
to obtain an average vector (In" and Qn"). This is achieved by reading all the bits needed
to represent In’ and Qn' except for the last Loga(2N) bits. In" and Qn" are used as input
to obtain the phase estimate by a 1/m tan-1 operation. Sine and cosine values of this
phase are obtained for each unique value of phase. In" and Qp" are mapped to unique
values of sine and cosine stored in the form of a single look up table in Output ROM (OR).
The sine and cosine values are then input to a Storage RAM (SR). The SR stores the sine
and cosine values corresponding to various channels in their unique locations. Sine
and cosine values stored at the first location of the SR are used only by samples of the
first channel. The second set of sine and cosine values stored in the second location of
the SR are used only by the samples of the second channel. Similarly, the nth set of sine
and cosine values are used only by the samples of the nth channel. The operations are
carried out such that the nth sine and cosine values operate on the samples of the nth
channel of the MRBS. This is followed by (n+1)th values operating on the samples of the

(n+1)th channel until the first set of samples of all the channels are processed. Then,

34

FTAVNG TLRIM - IM

SOV WOUA INNOD TVNIWHAL - 801
0DV WOHd INNOD TVNIWMAL - PIOL
WV 39VHOlLS - S
WOY .LNALNO - 0

TIAVNI AV - J
WO LNdNI - ¥

WYY NOLLVINWMDOV -

TIIWVS HOLVHINID SSTUAQQV - SOV
TANNVHO YOLVHANID SSTUAAQV - 00V

¥io PL WID

Y10
SIHOLVY
10 i
Y 3
OOQOU
- | am M
WHOW OL
indino | IS m I Rl
m Q ——_4 e
suUls
SIAOIV]
3%}
WON
SS3HAAV

u_w §01
SNy

O w10 > M 'YVYY
pooy I@I e
31 UV
HOLV1 \ pooL
pgie) g o)
¥10
o % _ m 1
et~ | I +
Y 0 _ w0
. E}
1o 1o SIWIWYS
W g g ML W._L dl 1NdNI
-- o fle————-
:E et | A “ &‘ _E uj
m 1
N
WOUYd
ssavaav TP
‘ _lwd._ﬂllL
ll.lYL uv \
plgle) WO 23t M - [
o a

¥

)
::w

Multiplexed Carrier Recovery Module (MCRM)

Figure 4.1:

35

the new set of samples from the MRBS use the same set of sine-cosine values. This
process is repeated for 2N sets, after which time a new set of sine cosines overwrite the

old set in the SR.

4.2.1.2 Wordlength Of Quantized Samples

The input samples for the in-phase and the quadrature-phase are assumed to be
eight bits wide. Together they form a 16 bit data input to the system. This 16 bit data
will act as an address to the ROMs for a look up operation. This 16 bit input data (or
address) will then require a 64KX16 ROM for the look up table. Also, the 16-bit data
output from the ROM is viewed as a combination of two 8-bit data. The size of the ROM
is proportional to the number of locations allowed for the input address. Therefore a
64KX16 IR and OR are necessary for a look up operation. The size of the RAMs
physically limit the number of channels that can be processed. A 1KX12 AR will be
sufficient to accomodate the accumulated 16 successive 8-bit samples for 1024
channels. A 64KX16 OR is used to store the look up table for the sine and cosine values
which are 8 bits each. The OR reads the first 8 most significant bits out of the possible
12 bits at its input. This amounts to a division by 16. A 4-bit counter is used as an
Address Generator for Channels (AGC). It counts to 16 which corresponds to 16 sets of
samples with each set representing samples of all the channels. A 10 bit Address
Generator for Samples (AGS) will be necessary to count up to 1024 unique channel

locations. A 12-bit adder is used for the accumulation of 8-bit samples.

4.2.1.3 Control Circuitry And Data Flow In MCRM

Latches are used in the design to synchronize the data flow through various
units. All the data latches are negative edge triggered. Therefore the data present at their
input are latched at the negative edge of the clock. The AGS is used to appropriately
address the desired locations of the RAMs. AGC is mainly used for control of data flow

in the module. The terminal count of AGS is used as a clock to the AGC. AGS is a counter

36

for the total number of channels in the system. AGC counts the number of complete sets
of samples for all the channels. This is also the estimation period for the extraction of
carrier phase (in this design, 2N=16). The control circuitry for the hardware design of
MCRM is shown in Figure 4.1.

An input sample at the IR appears at the AR during the second clock cycle
because of the delay due to two latches. For an accurate address to appear at the AR after
a single clock delay, the address from the AGS has to be delayed by a latch. The AR
accumulates samples over an estimation interval of 2N cycles. After this stage, the
accumulated values should not be read for one whole cycle. To achieve this purpose, a
Read Enable (RE) is not provided to the AR during this cycle. However, a Write Enable
(WE) 1s provided which will overwrite the accumulated samples of the previous 2N cycles
with a fresh set of samples. The logic requirements for AR are given in Table 4.1. Tced
denotes the terminal count from the AGC. CLK and CIK denote the clock and the clock
bar used in the system. WE and RE denote the write enable and read enable of

Accumulation RAM (AR).

Table 4.1 Logic for Accumulation RAM

Tced CLK CIK WE RE COMMENTS
0 0 1 0 1 Read disable
o 1 0 1 0o Read enable

1 0 1 0 1 Read disable
1 1 0 1 1 Read disable

The logic needed to obtain a Read Enable (RE) for the AR is achieved by an OR
gate with Tecd and CLB as the inputs. This could have been achieved in a better way by
using sequential logic as opposed to directly gating the clock onto combinational logic.

The CLK is used for providing WE for the AR. In each clock cycle, a read operation is

37

followed by a write operation. The RE to AR is not provided when Tced is 1. The Teed
remains 1 only for one particular clock cycle of AGC. Therefore, the RE to AR is not
provided during this cycle. Also, a latch delay is provided for the logic to appear at the
AR. This is to synchronize with the data available for read operation at the AR. Hence
the RE is denied for AR for one cycle when all the incoming new samples overwrite the
existing accumulated sample values.

In each clock cycle, the SR does a write operation followed by a read operation. A
WE to SR s provided only when the accurate sine-cosine values are available. Also, WE
is available only for one particular AGC cycle during which time all the values are
stored. Its Write Enable (WE) is provided only when the output of OR corresponds to the
sine-cosine of the accumulated samples. A WE is provided to the SR only after 15 AGC
cycles. After this time, the Terminal Count of the AGC (Tced) is output for one whole
AGC cycle. A three latch delay is provided for Tced to appear at WE of SR. This
corresponds to the delay in the input sample which will take three AGS clock cycles to
appear at the input of SR from the time it is input to MCRM. The address to SR is also
delayed by three clocks to account for the same delay. This delay is needed to address
the appropriate desired locations of the SR. The logic requirement for the SR is given

in Table 4.2. The WE and RE correspond to the Write Enable and Read Enable of the

SR.

Table 4.2: Logic for Storage RAM
Tced CLK CIK RE WE COMMENTS
0 0 1 0 1 Write disable
0 1 o 1 1 Write disable
1 0 1 0 0 Write enable

1 1 0 1 1 Write disable

38

The logic needed to provide the Write Enable to the SR is designed by using Tccd
and CIK as inputs to a NAND gate. The WE will be provided exactly for one particular
AGC clock cycle (when Tced=1) during which the sine-cosine values pertaining to all the
channels are available. It is then disabled until the next set of values of sine-cosine are

available. At this stage, the Tccd goes high again and the process is repeated.

4.2.2. Multiplexed RAM Buffer for Samples (MRBS)

The Multiplexed RAM Buffer for Samples (MRBS) is designed to store the
incoming samples for the duration of an estimation interval. The MCRM operates on
the samples obtaining the carrier phase for the channels. Also, at this time the input
samples are buffered in the MRBS. The MDRM uses the output of the MCRM along with

the stored values of MRBS to recover the digital data.

4.2.2.1 The Operations of MRBS

The Multiplexed RAM Buffer for Samples (MRBS) is designed basically to store
the incoming samples. The hardware design for MRBS is shown in Figure 4.2. This
design uses a single RAM-Latch combination at each stage to store samples of different
channels corresponding to each AGC cycle. The latches are used to latch the incoming
samples at the negative edge of the clock. When the clock is positive, the samples are
read from the RAM. They are latched at the negative edge of the clock. And, when the
clock is negative, the contents of the latch are written into the succeeding RAM.
Throughout this single clock cycle, the AGS addresses an unique location of the RAMSs.
A 1KX8 RAMs and 8 bit latches are needed for this design.

A sample of the first channel is stored only in the first location of the RAMs.
Similarly, any sample corresponding to the nth channel is stored only in the nth
location of the RAMs. Therefore the number of locations in the RAMs (1K in our case)

will be a physical limit on the number of channels that can be processed. In the specific

39

ADDRESS FROM AGS

AGS - ADDRESS GENERATOR SAMPLES

L -LATCH

u
&
ozg
3%
1O = 13
g

-l = <
= S
-
=)
[-4 lBI;
-l C Yt
~ '°|<
- <
1<}
& '0[1 o 1 =
= D< el
= Sk <l
He= < > =
) 1o
o ’BL, = .
e < >————
14 =) 10
< % Bl < E
é e < re——TL
w o 12} > 1o -4
% £ i
8 .y, — - y J
< = 10
-4 ‘3[4 :IB [-4
- - > =
O o]
= B[< <
It -t > L » JS |
1Ol »{O
* ol :ira o] i
-l > - RS |
S
= BJ <
e —< > 1 3
=) 10
= l?g -’ o
e R B |
-4 i;[‘ > ‘Bo -4
ps < >)
T i é » T -
s o} &
STWVS LNdNI
Figure 4.2: Multiplexed RAM Bufler For Samples (MRBS)

40

design for 800 channels the samples will be stored in 800 different locations of each
RAM.

The samples of all the channels are input serially. The first sample is latched
and moved to the first location of the first RAM with the AGS addressing the first
location. The second sample is moved into the second location addressed by the AGS
and so on until the 800th sample is in the 800th location addressed by the AGS. After
the first cycle of the AGC, the first set of 800 samples for all the channels is received.
These samples are stored in the 800 locations of the first RAM. The next set of
operations begins with an incremented AGC and a reset AGS. This corresponds to the
input of the second set of samples for all the channels. When the clock is positive, the
first sample of the second set is read from the first RAM into the second latch and is
latched at the negative edge; at the same time a new sample is latched at the first latch.
When the clock is negative, the latched samples are written into their succeeding RAMs.
Note again that these operations are done in one clock cycle with the AGS addressing
the first location of the RAM. This process continues until the AGS points to the 800th
location corresponding to the 800th channel. At this time, the first set of samples is
transferred to the second RAM and the just arrived second set is stored in the first RAM.
Movement of data and reading of new data continue for 15 AGC cycles. After 15 cycles
of AGC, the first set of samples is in the 15th RAM and the 15th set of samples is in the
first RAM. When the first sample of the 16th set is input to the MRBS, the very first
sample received is output from the 15th RAM to its succeeding latch. This sample is
delayed by three clock cycles by using three latches. This is done to provide the MDRM

with synchronized samples from MCRM and MRBS.

4.2.3 Multiplexed Data Recovery Module (MDRM)
The Multiplexed Data Recovery Module (MDRM) is designed to extract the digital

information. It operates on the samples processed by the MCRM and MRBS. Therefore,

41

Y
TEREE

In

On
cosa
sino

==

Y
IEGEER

qQ
&

Y
EREED

O

BUFFER CLK

nO-»C

TO-3»c

FROM
SR OF
MCR

Figure 4.3:

o
{

noA»e

o

[moa>c]

o
&

ADDRESS
FROM AGS
L
A
MSB T
‘ §
k @170 CLR
2 [MTRM |
c<
H
A pDR TPV
CLK DATA
WE OE
MSB T
Ll @210 _T_
T | MTRM Clxk CLK
C “
H
CLK
Tce
AGS AGC
Rs'

AGC - ADDRESS GENERATOR CHANNEL

AGS - ADDRESS GENERATOR SAMPLE
DDR -DIGITAL DATA RAM

OE - READ ENABLE

Tec - TERMINAL COUNT FROM AGC
Tcs - TERMINAL COUNT FROM AGS

WE - WRITE ENABLE

Multiplexed Data Recovery Module (MDRM)

it needs the input of these two modules for the start of its operations. This module
recovers the digital data which was modulated and transmitted. The hardware design

is shown in Figure 4.3.

4.2.3.1 MDRM Operations

The MDRM module utilizes the in-phase and quadrature-phase samples from
the MRBS along with the sine and cosine values of the MCRM to extract the digital data
for all the channels. At any time four values are input to this module. These values are
operated according to equations (3.13) and (3.15). The output is computed and stored
in a latch preceeding the Digital Data RAM (DDR) as shown in Figure 4.3. Also, these
values are used as an input to the Multiplexed Timing Recovery Module (MTRM). After
the necessary computations are performed the results are stored in unique locations of
the Digital Data RAM (DDR). These locations are addressed by the Address Generator
for Samples (AGS).

The result of the computations stored in the latch preceeding the DDR is either
negative or positive. The sign of the values stored in the latches is determined by
examining the Most Significant Bit (MSB) of the latch. For a positive value in the latch
a'l' is stored in the DDR. A '0' is stored for a negative value. This will be a 2-bit data bus
to the DDR corresponding to the input from the in-phase and the quadrature-phase
channels. The AGS will provide the addresses to the DDR for storing the digital data of
the various channels in their allotted locations.

From the time the samples are input to the MDRM, it will take three clock cycles
for them to appear at the DDR. This is because of the three latches used preceeding the
DDR. Hence the address from the AGS should be delayed by three clock cycles. However,
a six clock delay is provided to address the DDR to account for a further three clock
delay for the sample to traverse through the MCRM. This is due to considering the use of

a single integrated AGS for all the modules.

43

4.2.4 Multiplexed Timing Recovery Module (MTRM)

A Multiplexed Timing Recovery Module (MTRM) is designed to extract the timing
information needed for tracking the input samples. This timing information is used by
the interpolator. Its input is available from the latches used preceeding the DDR of the

MDRM. The output of these latches is used as an input to the MTRM.

4.2.4.1 Data Operations in MTRM

The Multiplexed Timing Recovery Module (MTRM) implementation for the
multiplexed channels is shown in Figure 4.4. The input samples of all the channels are
stored in the three Buffer RAMs (BRs). This RAM-latch sequence operates in a manner
similar to the RAM-latch operation described earlier for the MRBS. These samples are
input to the BR's at every clock cycle. The input samples stored in the first BR are
successively moved from one BR to the next until the three sets of samples of all the
channels are acquired. These samples are needed for the computations as in equation
(3.10). The address from an integrated AGS is delayed by six latches to account for the
delay in receiving the samples at the BRs as shown in Figure 4.4. The data sample is
read from the BR and is latched at the negative edge of the clock into the succeeding
latch. When the clock goes low, the preceeding latch contents are written into the BR.
These operations are performed simultaneously in all six BRs. The data are
transferred from one RAM to another using the intermediate latches. Once again, the
AGS provides the addresses for storing the input samples in the unique locations
allotted in the BRs. The computations are performed with the most recent peak sample
in the first BR and the estimated cross-over and peak samples in the successive BR's.

The relevant computations will start once the samples are available in all of
the BRs. The timing error in sampling each of the channels as in equation (3.11) is then
computed, updated and stored in a Timing RAM (TR). This error is accurnulated with the

previous error values and is stored in the TR. A correction in timing is available only

WVY ONIWIL - 41
SOV WOYJ INNOD TYNIWYAL - 591

WYY ¥344n4d - ¥g
OOV WOY JNNOD TYNINYAL - 2L
v - a0
TTEVNI LLDIM - M TIdWVYS YOLVIANID SSTAAAY - SOV

M
|

44

FIEVNI QY -0 TANNYHD ¥OLVHENED SSTMAQY - D0V
B STHOLY1
] < 1 ~€ | Sov
y WOud
H H H H [ssTuaav
o o o 2 J o} 3
hl., < 1 b1 . w « e w < | w
b g®) v
H < |1 1 1 1
] om om om Z
1 ; \ \ A m._
¥OLY10 [" v \ \
ov]? | L Tle V:uw
< < e
X S %
o [€ D &
L y 4 T
M ﬁ — on | ()] on om 8
H Q. 0, o
1 H H H =
. | _JL l w L] o] o] k4
4 - L A v ug % -l ud .ﬁ) ud 0
N1
IO —>10 L 1 1 1
i M
» - » - a SOV
D&bmagﬁ o o WOoud
v
g o0V 1 STHOLYT A ssE¥ad
40
.y 451 y o) A o
- |
— _ Jov SOV _A.l 1O

Multiplexed Timing Recovery Module (MTRM)

Figure 4.4:

45

for successive symbols which have a transition. Also, the operations should be
performed only at the next configuration with cross-over samples in the middle BR
and the peak samples in the extreme BRs. This will be available only at every other
AGC cycle. Each BR is a 1KX8 for accomodating 8 bit samples for a maximum of 1024
channel locations. The TR 1s a 1KX12 to accomodate for an overflow due to the

accumulation of samples.

4.2.4.2 Control Circuitry

After the samples are input to the MTRM, it takes three AGC clock cycles and
three AGS clock cycles for an input to be available at the Timing RAM (TR). A three
latch delay is provided for the address of AGS to appear at the TR. As discussed earlier,
the inputs to the TR should be read only at every other AGC cycle. Therefore, the TR is
enabled appropriately by a logic using the Least Significant Bit (LSB) of the AGC. The
TR needs the Write Enable (WE) to be provided for one AGC cycle and denied for the
next. This can be achieved by utilizing the LSB of AGC which changes from 0-1 and 1-0
every other AGC cycle. The logic for enabling the TR is provided in the Table 4.3. LAC

denotes the LSB of AGC. RE and WE represent the Read Enable and Write Enable of the

Timing RAM.

Table 4.3: Logic for Timing RAM
LAC CLK CIK RE WE COMMENTS
0 0 1 1 1 Write disable
0 1 0 o 1 Write disable
1 0] 1 1 0 Write enable
1 1 0 0 1 Write disable

The logic needed to provide the WE for the TR at every other AGC cycle is

achieved by a NAND realization of LAC and CIK . This will provide WE of TR for oi’xe

46

complete AGC cycle (amounting to 800 AGS cycles) and not provide it for the next AGC
cycle. By this process only those operated values corresponding to the samples which
are in the desired configuration in the BR's are written into the TR. A delay of three
latches is provided for enabling the TR. This is needed to coincide with the data which

appears at the TR after three clock cycles.

4.3 Design And Interface Of All The Modules

The combination of the four modules namely MCRM, MRBS, MDRM and MTRM
is collectively called a PRODEM. These four modules need to be appropriately
interfaced. The addressing scheme, control circuitry and the integration of addressing
units for all the modules need special attention. A design for each of the modules with
proper interfaces is shown in Figure 4.5.

As noticed from earlier discussions, the addressing for each of the modules is
achieved by using a AGS. All the RAMs used in each of the modules need an AGS for
addressing the locations pertaining to various channels. By interfacing these modules,
a single integrated AGS is desired. Use of single AGS also requires additional latches to
address the RAMs in each of the modules. Efforts were directed to use common control
circuitry for all the modules. Use of system AGS and AGC also required glue logic to
interface all of the modules. Also, buffers are needed to interface the outputs of MCRM
and MRBS to the MDRM. This enables the MDRM to operate on the in-phase and
quadrature-phase samples from the MRBS with the corresponding sine-cosine values
from the MCRM. The MTRM uses the ocutput of only one module (from the latches

preceeding the DDR of MDRM) and hence does not need any buffers for its interface.

The design is flexible in terms of the total number of channels that can be
processed. A single addressing scheme is used to keep the hardware flexible. By

choosing larger AGS and RAMs, the total number of channels can be increased. The

47

WOY LNdLNO - HO

NOY LNdNI - Hi
WvH ONIWIL - Hl

WvH viva WL1IDa - Haa
WYY NOLLYINWNDJY - By
NvY 3OVHOLS - HS

¢NOHd

1ndino
Ivioia

1Nd1LNO
ONINIL
+ +
» 11— | NOYHd
[T o)
H344nd vy
w0
o
us HO s gl —{ 59V)
4 vl
—I_Hm E _ SIHNVS
mzz_

H343n8 Wvd

PRODEM

Figure 4.5:

48

upper limit of the channels is restricted by the total number of locations in the RAMs.
In this design up to 1K channels can be demodulated as 1K RAMs are selected. However,
one should keep in mind that the clock speed of the units also restricts the number of
channels that can be processed. By designing the AGS as a variable counter, it is very
simple to accomodate a variable number of channels. The maximum count of the AGS
will automatically correspond to the maximum number of channels for the same
design. An algorithm is developed to process groups of varying bit rate channels and is
described in the next section.

4.3.1 Issues in AGS for Reconfigurability

As discussed earlier, the address generator AGS plays a crucial role in
addressing the appropriate locations of the RAMs. It is responsible in providing
addresses for accurate storage and retrieval of the data. If all the channels had a
uniform bit-rate, then the address generator AGS will count up to the maximum
number of channels and start the count all over again. In case of groups of varying bit
rate channels the algorithm will be different and is described as follows.

Let X and Y be the number of channels in two groups (Y<X). Then the address
generator will not access the channels serially (X+Y) in the RAM, but will access them in
such a way that the higher bit rate channels locations are accessed a greater number of
times than the lower bit rate channels. Assume Y has a higher bit rate, then the

algorithm will be as follows:
Do once
X channels
Do (X/Y) times (rounded to an integer)
Y channels
end

end

49

AGS that will incorporate this algorithm in the design will be reconfigurable
for groups of varying bit rate channels. The user will specify parameters related to
the number of channels, number of groups and the bit rate of the channels. A
microprocessor can be used to write a control word to control the logic of the address
generator. The AGS will count to the number of channels in the case of channels with
equal bit rates. If the channels are groups of different bit rate, then the addresses will be
generated as described by the algorithm. The AGS counting scheme can be prestored in
the form of a hardware look up table or it can be made available under the software
control of a microprocessor. The address generator can be configured from the ground
according to the user specifications. This is essential if the user needs to vary the

number of channels or the groups of channels.

4.3.2 Certain Sytem Parameters

The data recetved by the PRODEM could relate to the modulated data pertaining
to voice, data, high speed FAX or other applications. Based on the input, the bit rate can
be classified in three different groups as considered in [1]. The three different cases

considered are shown in Table 4.4,

Table 4.4: Several Bit Rate Applications

Bit rate - Number of channels Total bit rate
1. 64 Kbps 800 51.2 Mbps
2. 2.048 Mbps 24 51.2 Mbps
3. 64 Kbps & 2.048 Mbps 400 & 12 51. 2 Mbps

It can be seen that the total bit rate for all the cases is 51.2 Mbps. The PRODEM

has to maintain this rate of computation to process the information for all the

50

channels. Some of the parameters involved for processing the 800 channel case are

provided in Table 4.5.

Table 4.5: Some System Parameters

Modulation QPSK

Uplink SCPC/FDMA

Downlink TDM

Number of channels 800

Bandwidth of each channel 45 Khz

Bit rate of each channel 64 Kbps

Symbol rate 32 Ksps

Total channel bandwidth 36 Mhz (45Khz X 800)
Time allowed for processing 27.7ns

Time allowed for demodulation 27.7 ns (based on interpolation)
Overall bit rate required 51.2 Mbps (800 X 64 Kbps)
Word length 8 bits

Output of PRODEM 27.7 ns

Time for processing 800 channels 222ps

The address generator AGS provides the addresses for appropriately storing
and accessing the channel information. For 800 channels (64 Kbps each), it addresses
800 different locations of the 1K RAMS corresponding to 800 channels. Similarly, the
data for each sample of the 24 channels (2.048 Mbps each) are stored in and accessed
from 24 locations of the 1K RAM. In the third case which is a mix of varying bit rate
channels, the address generator first stores the data of the 400 channels (64 Kbps each)

in 400 locations of the 1K RAM. It then stores the data of the 12 channels (2.048 Mbps

51

each) by counting 400/12 = 33.33 (actually 34) times. This is necessary to process

higher bit rate channels.

4.4 Power Requirements

From a literature survey of the currently available memory and logic units [19-
21] the power requirements of the MCRM, MBRS, MDRM and MTRM are estimated. The
power estimates for the various units in the design are listed in Table 4.6. The
components used in each of the modules are listed in Table 4.7. The power requirement

of all the modules is listed in Table 4.8.

Table 4.6: Power Rating of the Units Used in the Design

RAMs 200 mwW
ROMs 100mwW
ADDER/SUB 20 mwW

MULTIPLIER 250mwW

Table 4.7: Total Number of Units Used in the Design

MODULE RAMSs ROMs ADD/SUB MULT LATCH
MCRM 3 2 2 - 16
MRBS 30 - .] 36
MDRM 1 - 2 4 16
MTRM 7 - 4 2 30

Table 4.8: Total Power Requirements of the Modules
MCRM 840 mwW

MRBS 6000 mwW

52

MDRM 1240 mw
MTRM 1980 mwW
TOTAL 10.06 W

4.5 Hardware Simulation

The modules of the PRODEM are simulated in high level using C language. The
software describes the operation of the hardware units for each of the module. The
operation of RAMs, latches, adders, control circuitry, etc., of each of the modules will be
described by the software. The software description pertains to the data flow in all the
hardware units with respect to the system clock.

The software programs are written to describe the operations performed by the
MCRM, MRBS, MTRM and MDRM. Also a program is written to describe the hardware
interface of MCRM, MRBS and MDRM. Each of these programs uses an input file
consisting of random numbers. These numbers are passed through the hardware
described by the program. The contents of the hardware units are displayed after each
clock cycle. Therefore the location of the data is easily examined for each clock cycle.
After a certain number of clock cycles the data are output from the module. The random
numbers are passed through the simulated hardware at least for this number of clock
cycles. The control circuitry is also incorporated in the simulation program. It
accounts for the RE andthe WE of the RAMs. The data are therefore read or written into
the RAMs based on whether or not certain control parameters are satisfied. The flow of
control signals can be seen in the output display of the units for each of the clock cycle.

The simulation is carried out for eight SCPC/FDMA channels. The estimation
period for these channels is assumed to be four samples. The simulation is therefore a
scaled down version for 800 SCPC/FDMA channels which had a sixteen sample

estimation period.

53

4.5.1. MCRM Simulation

A program is written to simulate the operations performed by the Multiplexed
Carrier Recovery Module (MCRM). The samples are input from a file consisting of
random numbers. These numbers are passed through the units of the MCRM. At each
clock cycle the contents of the AR, IR, OR and SR are displayed. The AGS increments
with every clock cycle. It counts up to eight unique values corresponding to eight
channels. The terminal count of the AGS is a clock for the AGC. The AGC count
represents the number of complete sets of samples pertaining to all the channels. In the
simulation, AGC counts to four unique values corresponding to four sets of samples
used in an estimation period. The simulation program, input and the output are listed
in Appendix B.

The samples are input to the MCRM at every clock cycle. For each clock cycle
various operations are performed to the IR, SR, AR and OR. The operation of these units
with respect to each clock cycle is shown in Table 4.9. These operations are
incorporated in the simulation program. Initially, the first set of data is available at
the output of the IR after the first clock cycle. The in-phase and quadrature-phase
samples in the IR are represented as IRI and IRQ, respectively, as shown in the output
file. At the second clock cycle, these data are moved to the ARs. The ARs used to store
the in-phase and quadrature-phase samples are represented as ARI and ARQ,
respectively. The data are stored in the first location of the ARs as shown in the output
file. After the second clock cycle, the data are stored in the next successive locations of
the AR. Note that the AGS is incremented with each clock cycle and the AGC is
incremented with every terminal count of the AGS. After the AGC is incremented the
ARs will have the first set of data corresponding to eight channels. During the second
AGC cycle, the input data from the IR are accumulated with the data in AR and stored
back in the ARs. The sine and cosine parts of the OR are represented as ORS and ORC,

respectively. The output data from the OR for each clock cycle are not written into the

54

SR until certain conditions are met. Data are written into the SR during the fourth AGC
cycle (AGC=3 and AGS=4). This is because the sine-cosine values of the accumulated
values are available only at this instant (as seen in the output file in Appendix B). This
set of values is available for one AGC cycle during which time all the sine-cosine values
for all the channels are received. SRS and SRC are used to represent the sine and cosine

values of the SR.

Table 4.9: Operations of MCRM

Positive clock: READ AR (only when Tced = 0)
READ IR
READ OR
WRITE SR (only when Tced = 1)

Positive to negative transition: LATCH data
Negative clock: WRITE AR
READ SR

Note that the instant when the first output is available from the MCRM, this
happens when AGC=3 and AGS=4. Thereafter an output is available at every clock cycle.
Also note that the same values of SR are output for four AGC cycles. Hence the SR values
will not be updated until the AGC is reset and again reads the values that allow such an
operation (AGC=3 and AGS=4). At this instant fresh values overwrite the existing values
in the SR. Also, the AR will store accumulated values until AGC=0 and AGS=1. After this
time, fresh samples from the IR will overwrite the accumulated samples in the AR as
seen in the output listed in Appendix B.

4.5.2 MRBS Simulation
The Multiplexed RAM Buffer for Samples (MRBS) is used to store the incoming

samples. A program is written to describe the operations performed by the MRBS. RAMs

55

are used to store samples of various different channels. Latches are used to transfer the
data from one RAM to the next. As shown in Table 4.10, data are read from the RAMs
when the clock is positive. The write operation is performed when the clock is negative.
During the negative edge of the clock the data are latched. The simulation program
incorporates these operations for each clock cycle. The simulation program, input and

output are listed in Appendix C.

Table 4.10: Operation of MRBS

Positive clock: READ RAM
Positive to negative transition: LATCH DATA
Negative clock: WRITE RAM

The samples are input to the first latch and first RAM of the MRBS. The first
latch and RAM are represented in the output file as LAl and RA1, respectively. At the
end of the first clock cycle, the data are stored in LAl and the first location of RA1 as
shown in the output program listed in Appendix C. After this clock cycle the samples
are stored in the successive locations of the RAl. The AGS is incremented with every
clock cycle and 1s used to address the storage locations of the RAMs. Also the AGC is
incremented by the terminal count of AGS. After one AGC cycle, the first set of samples
of the eight channels is available in RA1l. After this time, the next set of samples is
input to the RA1 and its previous set is transferred to the second RAM (RA2) by using the
second latch (LA2). This indicates a new AGC cycle. By the end of this cycle (AGC=1 and
AGS=8), the first set of samples is in RA2 and the second set of samples is in RA1. This
process is repeated until the samples are moved through the third RAM (RA3) and the
fourth RAM (RA4) by using the third latch (LA3) and the fourth latch (LA4), respectively.
As seen in the output file, the output of the module is available when AGS=1 and AGC=3.

The data from LA4 are available as an output after this clock cycle.

56

4.5.3 MDRM Simulation

The Multiplexed Data Recovery Module (MDRM) needs inputs from the MCRM
and the MRBS modules. Therefore the data output from these two modules are
synchronized with input to this module. This is achieved by observing the data output
from the two modules and designing latches to hold the data output from a faster
module. Since the data from the MRBS is output three clocks earlier than that of the
MCRM (see programs listed in Appendices B and C for MCRM and MRBS), three
additional latches are used to interface the MRBS to the MDRM.

The AGS and the AGC operate for eight channels as described earlier. MU1, MU2,
MU3 and MU4 are used in the output file to represent the data output from the
multipliers of Figure 4.3. After the first clock cycle the data are available at the output
of the multipliers. After the second clock cycle it is available at the output of the adder
represented as ADD and the subtractor represented as SUB. The data are input to the
latches LA1 and LA2 during the third clock cycle. DDI and DDQ are used to represent the
in-phase and quadrature-phase storage locations of the DDR. The data values are input
to the DDR during the fourth clock cycle. It takes three clock cycles for the data to
appear at the input of the DDR. This is due to the three clock delays corresponding to the
three latches used preceeding the DDR. The operation of the units of this module is
shown in Table 4.11. The simulation program describes these operations. As can be
seen in the output file listed in Appendix D, an output is available from this module
when AGS=4 and AGC=0. After this instant, a sample is output from the DDR of this

module at every clock cycle.

Table 4.11: Operations of MDRM
Positive clock: WRITE DDR
Positive to negative transition: LATCH data

Negative clock: READ DDR

57

4.5.4 MTRM Simulation

The MTRM needs an input from the MDRM module for the start of its
operations. The output from the latches preceding the DDR are used as an input to the
MTRM. The data are moved from one BR to the next similar to the data movement in
the RAMs of the MRBS module. It takes three AGC cycles for the data to traverse through
the three BRs. The operation of the hardware units is shown in Table 4.11 and the
simulation program listed in Appendix E incorporates these operations for each clock

cycle.
Table 4.12: Operations of MTRM

Positive clock: READ BR
READ TR

Positive to negative transition: LATCH data

Negative clock: WRITE BR

WRITE TR (only when LAC=1)

LQ1 and RQ1 used in the output flle represent the first latch and the first BR of
the quadrature channel. LI3 and RI3 represent the third latch and the third BR of the in-
phase channel. Since a analysis of data flow for the MRBS module is already verified
all the latches and RAMs of this part of the MTRM are not shown in the output listed in
Appendix E. From an earlier discussion the data are available at the input of LI4 and
LQ4 which represent the fourth latch of the in-phase and quadrature-phase when
AGS=1 and AGC=3. ISB and QSB are the outputs of the subtractors for the in-phase and
quadrature-phase respectively. IML and QML are the outputs of multipliers for the in-

phase and quadrature-phase respectively. After the data are available at the output of

58

the LI4 and LQ4 latches, it takes two clock cycles for it to appear at the input of TR. ADD
and AER represent the data at the adders used preceeding the TR. The data are input to
the TR when AGS=4 and AGC=3. After this instant, data are continuously input to
different locations of TR corresponding to various channels till AGS=4 and AGC=0. For
the next AGC cycle no samples are written into the TR. Following this the samples are
once again written into the TR. The simulation program, input and the output files are

listed in Appendix E.

4.5.5 System Simulation

The data flow for the modules is examined for the operation of the interface of
the modules. The address generator AGS is integrated for all the modules in this
simulation. Since the operation of the internal units of the MCRM, MDRM, MRBS and
MTRM are already known, this program incorporates the operation of these modules
and describes the hardware for the interface. The program is listed in Appendix F. It
accounts for the interface of MCRM and MRBS for the MDRM module.

The nomenclature used in the output file is similar to the one used for the
individual modules. In addition, SLC and SLS are the cosine and sine values in the
latches at the input of the MDRM. BI4 and BQ4 are the interface latches used at the
output of the MRBS. DIL and DQL are the latches of MDRM for storage of the digital data
in the DDR. RID and R@QD are the digital data present in the DDR which correspond to
the in-phase and quadrature-phase respectively.

It is seen that when AGC=3 and AGS=1, the data are available at the output of the
MRBS. It goes through three further latches after which it is available as an input to the
MDRM. This is necessary because the MCRM has an output only when AGC=3 and
AGS=4. At this instant the sine-cosine values are available from the SR of the MCRM
module. It takes three more clock cycles for the data to be input to the DDR. Therefore

the throughput of the system is easily observed by having a sample output from the

59

DDR for every clock cycle after the initial input to the DDR. When the outputs are
available the counters are reset {AGS=1 and AGC=0). Incidentally, this is also the start

of input of new set of samples.

Chapter V
A HYPERCUBE IMPLEMENTATION FOR SCPC/FDMA VOICE CHANNELS

In this chapter digital demodulation of Single Channel Per Carrier/ Frequency
Division Multiple Access (SCPC/FDMA) voice channels is implemented using a
hypercube. The demodulation algorithms are mapped onto several processors of a
binary hypercube. The aim is to provide a mapping [{24-31] of these algorithms on a
hypercube architecture capable of recovering messages for several SCPC/FDMA voice
channels. Two models are developed and their simulations are performed. The speedup
results are also provided.

The discussion in this chapter is limited to exploring another scheme for high
speed demodulation of SCPC/FDMA channels. Since the hardware and power
requirements of an On Board Processing application are very crucial, this
implementation may not suitable for such an application. However, it could possibly be
used for certain other terrestrial applications. Also, the discussion is focussed on
mapping of these algorithms, their assignment and the performance estimation in
using such hypercubes.

A hypercube is a parallel computer with a fixed pattern of interconnection
among its processors. A three dimensional binary hypercube has processors placed at
the vertices of a cube with the edges being the interconnection between them as shown
in Figure 5.1. It has 23 processors. A generalized hypercube of n dimensions has 21
processors. Also, it has n disjoint paths between any pair of nodes. Each node of the
hypercube has a processor and a memory unit and is called a Processor Element Module
(PEM). To represent the eight processors three bits are needed. The processors are
connected such that its neighbors differ only in a single bit position out of the three bits

used to represent them. The versatility of the hypercube [32-35] comes from the various

60

61

PEMG (110) PEM7 (111)
PEM2 PEM3
(010) (011)
PEM4 (100) PEMS(101)
PEMO (000) PEM1 (001)
Fligure 5.1: PEM Configurations For A Hypercube

dynamically configurable topologies and from a simple algorithm for node to node

communications.

5.1 Mapping Strategy
5.1.1 Algorithm Division

In order to understand the principle behind the division of an algorithm, let us
analyze a simple algorithm and its task units as shown in Figure 5.2. Let the three
processes A, B & C be the tasks being pipelined with an assumption that B takes the
maximum computational time. Therefore this task will govern the operating speed of
the algorithm for a parallel computer. This computational time can be reduced by
examining B and further splitting it into parallel parts if possible. Otherwise, it can be
split into two further tasks in a pipeline. This process can be repeated till a lot of
smaller tasks are obtained. But usually in an extreme case if many tasks are created, a
lot of synchronizations and data transfers degrade the performance which we are

trying to achieve. Note that the slowest module in the diagram will govern the eventual

62

operation of the system. This principle is used to implement the demodulation

algorithm.
A B c A B1 B2 c
ORIGINAL ALGORITHM PIPELINED SPUT
B1
A B1 B2 8 C
HIGHLY PIPELINED SPUT

PARALLEL SPLIT

Figure 5.2: Parallel-Pipeline Splits Of An Algorithm

The demodulation algorithm is already studied in great depth in chapter 3. All
the operations performed for the demodulation are listed in Table 5.1. The operations
C-1 to C-5 pertain to the carrier recovery algorithm. T-1 to T-4 and D-1 to D-4 pertain to
the timing and data recovery algorithms respectively. In a sequential implementation.
all these operations will be assigned to a single processor. If several processors are
available, portions of the algorithm will be assigned to each processor. This is
necessary if a single processor cannot process the complete algorithm. From the list of
computations needed for the demodulation, a simple flowgraph is drawn as shown in
Figure 5.3. This algorithm is divided into four parts assuming four processors are used
for all the operations of each channel. The other four processors of the binary

hypercube can be used to operate on another channel in parallel. Hence, a single

63

hypercube can be used to process two channels in parallel. A mapping of these models

is performed in the next sections.

Table 5.1: List of operations for demodulation

In +JQn = Rn. ejen. (C-1)
In' +jQn’ =(Rn)4 . exp (J4en) (C-2)
In" =1/2N+1 X In n=-Nton=N {C-3)
Qn" =1/2N+1 X Qn' n=-Nton=N. (C-4)
gc= 1/m tan-1 (Qn"/In"). ' (C-5)
An =In. cos ¢ + Qn. sinec (D-1)
Bn = Qn. cos ac - In. sinac ‘ (D-2)
An =1#fAn<0 (D-3)
= O otherwise
Bn =1ifBn<0O (D-4)
=0 otherwise
Ti =[A2n-1 {A2n -I2n-2}] (T-1)
Tq =[B2n-1 {B2n -B2n-2}] (T-2)
Un =Tin + Tgn (T-3)
Wn =Wnl + Un (T-4)
5.1.2 Model-1

A model is developed for the algorithm as shown in Figure 5.3. Four tasks are
created for this algorithm. Each task is then assigned to a processor. The assignment is
shown in Table 5.2. The configuration of the PEMs for such an assignment is shown in
Figure 5.4. The numbers denote the PEMs of the binary hypercube. In this model four
processors are used for operating on a single channel. The other four processors are
used for operations on a second channel.

The mapping procedure is now discussed in detail. Let us assume that the
operations C-1, C-2, C-3, C-4 are assigned to PEMO. This processor can communicate
directly to PEM1, PEM2 or PEM4. If PEM1 is chosen to process C-5, D-1, D-2, its output

can communicate directly only with PEM3 and PEM5 which are not assigned as yet.

Figure 5.3: Mapping Of Model-1

Figure 5.4: Hypercube Configuration For Model-I

Figure 5.5: Data Flow For Model-|

65

This is because of the configuration of the processors of the hypercube (see Figure 5.1).
Therefore, the processors PEM3 and PEMS5 are designated T-1, T-2, T-3, T-4 and D-3, D-4
respectively. The other four processors of the hypercube are utilized for identical set of
tasks of a second channel. Let PEM2 be the processor designated to operate on the
operations C-1, C-2, C-3, C-4 processes. Now the option is limited to choosing PEM6 for
the succeeding operations on C-5, D-1, D-2. This leaves PEM4 and PEM?7 to perform the
operations corresponding to T-1, T-2, T-3, T-4 and D-3, D-4 respectively. Note that we
are striving to obtain those processor pairs which are directly connected to each other
for data transfer. This will save time and avoid additional hops from one processor to
another through an intermediate processor. Also, note that some of the additional
available interconnections are not utilized for this application. The hypercube as
assigned for this model, can operate simultaneously on 2 SCPC/FDMA channels in
parallel. The direction of transfer of data for these two channels is shown in Figure 5.5.
After the first task is computed by PEMO and PEM2, their outputs are transferred to
PEMS6 and PEML1. In the second stage, PEM6 in turn computes its assigned task and
broadcasts the data to PEM4 and PEM7. Similarly PEM1 broadcasts data to PEM3 and

PEMS5 after completing operations of its assigned task.

Table 5.2: Task assignment for Model-I

TASK NUMBER PEM NUMBER OPERATIONS
Task 1 0.2 C-1,C-2,C-3,C4
Task 2 1,6 C-5,D-1,D-2
Task 3 3.4 T-1, T-2, T-3,. T-4

Task 4 57 D-3,. D-4

66

5.1.3 Model I

A second model is also developed for mapping the algorithm. In this model the
algorithm is assigned differently as compared to the earlier model. However, as before
four processors are used for processing four tasks of each channel. The tasks are
assigned to the processors as shown in Figure 5.6. The mapping procedure is similar to
the one described for Model-1. PEM3 and PEMS are assigned the operations of C-1, C-2,
C-3 and C-1, C-2, C-4 respectively. Since these two processing elements are connected
directly only to PEM1 and PEM7; one of them is chosen to process the subsequent
operations C-5, D-1, D-2, D-3, D-4 of the third task. Let us assume that PEM7 is chosen
for achieving this process. It is in turn connected to the only other unassigned processor
which is PEM6. Therefore the fourth task is assigned to PEM6 with the operations T-1,
T-2, T-3, T-4. Therefore this model uses PEM3, PEM5, PEM6 and PEM7 for processing
the operations of a single channel. Note that this model has duplicate operations in the
first two tasks. Although this assignment appears to be redundant, as will be seen later,
it was aimed at achieving a better load distribution among the processors.

Similarly, the other four processors are assigned the operations of a second
channel. PEM4 and PEM1 are assigned the operations of the tasks with the operations
C-1, C-2, C-3 and C-1, C-2, C-4 respectively. The only processor that is connected to these
two processors and which is unassigned is PEMO. It is used to process the operations of
the third task which are C-5, D-1, D-2, D-3, D-4. PEM2 is used to process the
information output from PEMO. It is therefore assigned the operations T-1, T-2, T-3, T-4
of the fourth task. The list of operations and their mapping is shown in Table 5.3.

The data flow for this model will be with PEM3 and PEMS operating on the first
two tasks of the first channel. Simulatanecusly PEM4 and PEM1 operate similarly for
the second channel as shown in Fiéure 5.7. In the second stage the PEM7 and PEMO

operate on their tasks and transfer the data to PEM6 and PEM2 respectively.

67

C-1,C-2,C3
>| PEM
34 YD-L D-2, D-3, D4
PEM >| PEM >
7,0 6,2
PEM T-1, T-2, T-3, T4
—>1 5,1
C-1,C-2,C4

Figure 5.6: Mapping Of Model-1l

o
ot

Figure 5.7: Data Flow For Model-lI

68

Table 5.3: Task assignment for Model-II

TASK NUMBER PEM NUMBER OPERATIONS
Task 1 3.4 C-1,C-2,C-3
Task 2 5.1 C-1,C-2,C4
Task 3 7.0 C-5,D-1, D-2,D-3. D-4
Task 4 6,2 T-1, T-2, T-3, T-4
5.2 Simulation Of Models

The channels are simulated in Ada programming language. Ada is chosen for
this simulation as it is convenient to implement certain features of a multiprocessor
such as a hypercube [36-41]. The important features of a multiprocessor are the
interprocessor communication and synchronization techniques. The interprocessor
communication deals with the actual transfer of data from one processor to its
neighbour. The synchronization technique deals with making the processors operate at
a given iteration level. This amounts to holding the processor that completes its
assigned task earlier than its neighbouring processors. Ada supports the usage of these
features which are incoporated in the predefined constructs called tasks. Hence it is
chosen for the simulation of our hypercube.
| The program for these models is developed for 32 channels as it was convenient
to implement. The estimation period for these channels is sixteen samples. Therefore
at any given time, a PEM processes its assigned task's operations for sixteen times. The
flowchart of the models used in the simulation is shown in Figure 5.8. Each task is
assigned the operations as discussed earlier. The operations of each task are repeated
for sixteen times corresponding to the sixteen sets of input data. The tasks are allowed
to communicate only as shown m>the Figure 5.8. The simulation programs for Model-I

and Model-II are listed in Appendix G and Appendix H respectively. In these programs,

69

MODEL-1

BEGIN

TASK 1

TASK 2

¥

TASK 3

TASK 4

END

Figure 5.8:

MODEL-II

BEGIN

TASK 1

TASK 2

TASK 3

TASK 4

END

Simulation Flowchart For Model-1 And Model-II

70

32 channels are simulated. However, PEMs of each channel operate independently and
irrespective of the operations performed by other PEMs operating on other channels.
Therefore the result of the simulation can be linearly extrapolated for any number of
channels.

The number of floating point operations for each model is noted and is listed in
Table 5.4. A communication penalty of 10 floating point operations is assumed as an
overhead. The speedup is estimated based on the task which has the most number of
floating point operations. This relates to an earlier discussion on the slowest
computing processor governing the speed of the multiprocessor system. The speedup is
compared to that of a single processor. It is observed that for our models, X hypercubes
can process 2X channels. Also, X hypercubes (or 8X processors) can be used for achieving
a speedup of 8X times over a single processor. However, in a practical situation, due to
the unequal distribution of load among the processors and due to the communication
penalty, a degradation in performance is expected. The achieved speedup for Model-I is
shown in Figure 5.9. Since Model-II has a better distribution of its operations among

the processors, it shows an improvement in its performance as shown in Figure 5.10.

Table 5.4: Floating point operations for Model-1 and Model-II

MODEL-I (UNBALANCED) MODEL-II (BALANCED)
C-1,C-2,C-3.C4 10X16 =160 C-1,C-2,C-3 8X16 =128
C-5,D-1,D-2 6X16+4=100 C-1,C2,C4 8X16 =128
D-3,D-4 2X16 =32 C-5,D-1, D-2, D-3,D-4 8X16+4=132
T-1,T-2, T-3, T-4 5X16 =80 T-1,T-2, T-3, T-4 5X16 =80

From earlier discussions in chapter 4, the data of all 800 channels is input
every 22.2us. Each task does its operations sixteen times corresponding to the sixteen
samples of an estimation period. Therefore, the time available for completing each task

is less than 355.2us (22.2usX16). This makes sure that the processing time is faster than

71

300

——Ttr— practical
——®— idsal

Q.
]
)
Q
]
Q
L
- ——
0 10 20 30 40
Number of hypercubes
Figure 5.9: Performance Of Model-1
5000
1 —o— balanced
4000' ——— unbalanced
- [deal
a
3
©
(-3
[
o
[}

0

T v 1 v 1 v 1 v
400 600 800 1000 1200
Number of channels

T
200

Figure 5.10: Performance Enhancement With Load Balancing

72

the input rate. As the slowest task has more number of floating point operations than
the other tasks, an estimate of the time taken for its floating point operations is
sufficient to determine the performance of the system. By knowing the number of
floating point operations that need to be performed in a given time, the Mega Floating
Point Operations Per Second (MFLOPS) rating of the hypercube can be predicted.
Therefore each processor of the hypercube has to sustain atleast {(160+10)/355.2 =
0.48] MFLOPS for the operation of the Model-1. Ten floating point operations are
assumed as an overhead for the communication of data between the .processors. In case
of Model-II, each processor needs to sustain lesser [(128+10)/355.2 = 0.39] MFLOPS.
Therefore, the hypercube chosen for such an application is required to sustain (0.48X8

= 3.84) MFLOPS and {0.39X8= 3.12) MFLOPS for Model-I and Model-II respectively.

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this research project, an efficient demodulator architecture is developed for
a large number of low data rate small earth station users in an SCPC/FDMA system.
The development of the architecture is based on the parallel-pipelined design approach.
This principle aims at mapping the algorithm in such a way that the independent
sections are assigned to the parallel units and the dependent sections to the pipelined
units. The speed of the computational units is governed by the clock rate of the module,
hence high speed computational units are used. The speed of the demodulator depends
on all the modules in operation. The input samples of the various channels are
obtained from a pipelined FFT. These serially input samples support the multiplexed
demodulator architecture as opposed to the bank of parallel demodulators. This device
is capable of processing a large number of channels which may be variable in both
number and bit rates.

Also, a multiprocessor approach is provided with an emphasis on a three
dimensional binary hypercube. The development of this architecture is also based on
the parallel processing approach. Two models are created for mapping the
demodulation algorithms for such a scheme. The creation of an appropriate model has
a bearing on the performance of the system. It is found that an improvement is achieved

in providing load balanced models.

6.2 Future Research
Some of the future research could be directed in the following areas:
- The design of the hardware interface between the output of the

transmultiplexer and the input to the PRODEM will be required. This will pertain to

73

74

the design of an interpolator. The storage and the retrieval of the data for multiple
channels for this device should also be investigated. The number, group size and the bit
rate of the channels should be programmable. This is critical as time multiplexing is
inversely related to the speed of the designed hardware.

-In the hardware design approach, the elimination of MRBS will improve the
power and hardware requirements to a large extent. Future work should lock at
possibilities of eliminating the need for MRBS.

- The proposed design is for a QPSK modulation scheme. The design could be
generalized to accomodate other bandwidth efficient modulation schemes with
multiple data rates. To begin with, Offset-QPSK and 8-PSK could be considered.

-The design in this research maximizes the throughput rate for a given
application. This is achieved by using parallel and pipeline techniques and may
require several custom-VLSI chips. For low bit rate applications (1 to 10 Mbps) it will be
desirable to design a single chip demodulator rather than distribute its functions over
several chips. It should be recognized that a transmultiplexer is followed by a
demodulator in our application (On-Board Processing) but the demodulator itself could
also be used in other space and ground locations. In this regard some of the work done

related to hypercubes and other multiprocessors could also be investigated.

75

Appendix A
SIMULATION OF THE DEMODULATION ALGORITHMS IN A QPSK MODEM

0O0On0n0n

0O

000

an0o0on

76

SUBROUTINE phaseest{insig,strobe,outsig)

AUTHOR: LINUS P. EUGENE
ADVANCED COMMUNICATION RESEARCH LABORATORY
UNIVERSITY OF TOLEDO
TOLEDO, OHIO

Carrier phase estimator

This sub;outine extracts the carrier phase. The modulation
information is killed and the carrier phase obtained.

ARGUMENTS:)
insig - A complex input signal withphase disturbance
outsig - An output signal with the phase estimate of the

carrier

IMPLICIT NONE
INCLUDE 'BOSS$SYSTEM:[SYSTEM]BOSSFORTRAN.INC'

REAL tphase,q,in,newphase,y,quad,realpart,imagpart,r,i,phase,mag
INTEGER count

COMPLEX newsig, insig,outsig,phasesig

LOGICAL *1 strobe

1) Rotate out the demodulation

in=REAL(insig)
quad=AIMAG(insig)
phase=ATAN2(quad,in)
phase=4*phase

2) Obtain the phase of the disturbance

mag=in*in+quad*quad
newsig=CMPLX(COS(phase),SIN(phase))
i=REAL(newsig)

q=AIMAG(newsig)

newphase=ATAN2(q,1i)}
newphase=0.25*newphase
outsig=CMPLX(COS(newphase),SIN(newphase))

RETURN
END

0oaoaan

(9}

77

SUBROUTINE conphase(insig,outsig)

LINUS P. EUGENE

ADVANCED COMMUNICATION RESEARCH LABORATORY
UNIVERSITY OF TOLEDO

TOLEDO, OHIO

Constant magnitude and transparent phase unit.

This subroutine outputs the same phase of the input signals.
It normalizes the magnitude of the input signal

ARGUMENTS :
insig - input complex signal
outsig- output complex signal

IMPLICIT NONE
INCLUDE ’'BOSSS$SYSTEM:[SYSTEM]BOSSFORTRAN.INC'

REAL inphase,newphase,y,quad,realpart,imagpart
COMPLEX insig,outsig

inphase=REAL(insiq)
guad=AIMAG(insiq)
y=(quad/inphase)
newphase=ATAN(y)
realpart=COS(newphase)
imagpart=SIN(newphase)
outsig=CMPLX(realpart,imagpart)

RETURN
END

(2] 0O 00000

00

oo 00000000

78

SUBROUTINE pedemod(insig, outsig, strobe, outstrobe,
& carrier,phasesig,sym rate)

AUTHOR : MARK J. VANDERAAR

REVISED AUTHOR : LINUS P.EUGENE

ADVANCED COMMUNICATION RESEARCH LABORATORY
UNIVERSITY OF TOLEDO

TOLEDO, OHIO

QPSK Coherent Demodulator

This subroutine demodulates a signal in complex envelope form.
It obtains the phase estimate from the carrier phase estimator
and effectively uses it with the complex signal.

ARGUMENTS :

A complex number that represents the input to

the demodulator

outsig - The demodulated data (complex). Note that it is
not the output symbol, but the vector that
represents the output symbol.

strobe - A logical input impulse train at the rate of

the symbol rate.

A logical output impulse train at the rate of

the symbol rate.

insig

outstrobe

carrier - The carrier frequency for simulation purposes,
this will most often be zero.

phasesig - The phase estimate from the carrier phase estimator
module.

IMPLICIT NONE
INCLUDE ’'BOSSS$SSYSTEM:[SYSTEM]BOSSFORTRAN.INC'

Define the variables
LOGICAL*1 strobe, outstrobe

REAL inphase, quad,inpart,qapart, carrier, phil, phi2,radian
REAL ininp , tphase, inquad, sym_rate
COMPLEX insig, outsig, area, phasesig, phi

Set up the local memory structure

STRUCTURE / LOCMEM /
LOGICAL*1 inited, started, strobeflg
REAL phase, oldin, oldgquad
COMPLEX fintegral, integral

END STRUCTURE

RECORD /LOCMEM/ MEM

If this is the first call to the subroutine,
initialize variables.
IF{.NOT.mem.inited) THEN

mem.started = .FALSE.
mem.strobeflg = .FALSE.
mem.inited = .TRUE.
mem.integral = (0.0,0.0)
mem.fintegral = (0.0,0.0)
mem.oldin = 0.0
mem.oldquad = 0.0

ENDIF

79

At the beginning of the first symbol, calculate
the phase delay
IF (strobe) THEN

IF (.NOT.mem.started) THEN

mem.phase = carrier*curtime
mem.started = .TRUE.
ENDIF

ENDIF

Perform a step of the demodulation
1) split the signal into the inphase and quadrature components
inphase = REAL(insig)

quad = AIMAG(insig)
2) Calculate the real and imaginary part of the input phase
estimate.
phil = REAL(phasesig)
phi2 = AIMAG(phasesig)

3) Multiply the components by the basis function

inpart = inphase*phil+quad*phi2
gapart = quad*phil-inphase*phi2
outstrobe = strobe

outsig = CMPLX(inpart,gapart)
RETURN

END

OUTPUT FILE WODEM

Time =
#Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
#Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$§Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$§Errors
0

Time =
$Errors
0

Time =
$Errors
0

0.

2028000E+00
$Bits BER
100 0.0000E+0O0
.4028000E+00
§Bits BER
200 0.0000E+00
.6028000E+00
#Bits BER
300 0.0000E+0Q0
.8028000E+0Q0
$#Bits BER
400 0.0000E+00
.1002800E+01
$Bits BER
500 0.0000E+00
.1202800E+01
#Bits BER
600 0.0000E+00
.1402800E+01
$Bits BER
700 0.0000E+00
.1602800E+01
$#Bits BER
800 0.0000E+00
.1802800E+01
§Bits BER
900 0.0000E+00
.2002800E+01
#Bits BER
1000 0.0000E+00
.2202800E+01
§Bits BER
1100 0.0000E+00
.2402800E+01
§Bits BER
1200 0.0000E+00
.2602800E+01
$§Bits BER
1300 0.0000E+00
.2802800E+01
#Bits BER
1400 0.0000E+00

Time =
$Errors
0

Time =
#Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$#Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
#Errors
0

Time =
$Errors
0

Time =
$Ecrrors
0

Time =
#Errors
0

81

0.3002800E+01

§Bits
1500

0

0.3202800E+01

#Bits
1600

0.

0.3402800E+01

#Bits
1700

0.

0.3602800E+01

#Bits
1800

0.

0.3802800E+01

$§Bits
1900

0.

0.4002800E+01

#Bits
2000

0.

0.4202800E+01

#Bits
2100

0

0.4402800E+01

$Bits
2200

0.

0.4602800E+01

$§Bits
2300

0.

0.4802800E+01

¥Bits
2400

0.

0.5002800E+01

§Bits
2500

0.

0.5202800E+01

#Bits
2600

0.

0.5402800E+01

#Bits
2700

0.

0.5602800E+01

$Bits
2800

0.

0.5802800E+01

$§Bits
2900

0.

BER

.0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER

.0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

Time =
$#Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$§Errors
0

Time =
$§Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

82,
.6002800E+01

#Bits

3000 0.
.6202800E+01
#Bits

3100 0.
.6402800E+01
§Bits

3200 0.
.6602800E+01
#Bits

3300 0.
.6802800E+01
$#Bits

3400 0.
.7002800E+01
#Bits

3500 0.
.7202800E+01
$Bits

3600 0.
.7402800E+01
#Bits

3700 0.
.7602800E+01
#Bits

3800 0
.7802800E+01
#Bits

3900 0.
.8002800E+01
#Bits

4000 0.
.8202800E+01
#Bits

4100 0.
.8402800E+01
$Bits

4200 0.
.B602799E+01
§Bits

4300 0.
.8802800E+01
$Bits

4400 0.

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+0Q0

BER
0000E+0Q0

BER
0000E+0U

BER
0000E+00

BER
0000E+00

BER

.0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

Time = 0.90§E%OOE+01

$Errors #Bits BER
0 4500 0.0000E+00
Time = 0.9202800E+01
BErrors #Bits BER
0 4600 0.0000E+0O
Time = 0.9402800E+01
#Errors #Bits BER
0 4700 0.0000E+00
Time = 0.9602799E+01
$Errors §Bits BER
0 4800 0.0000E+00
Time = 0.9802800E+01
$Errors $§Bits BER
0 4900 0.0000E+00
Time = 0.1000280E+02
$Errors #Bits BER
0 5000 0.0000E+00
Time = 0.1020280E+02
$Errors #Bits BER
0 5100 0.0000E+00
Time = (0.1040280E+02
$Errors $Bits BER
0 5200 0.0000E+00
Time = 0.1060280E+02
$Errors §Bits BER
0 5300 0.0000E+00
Time = 0.1080280E+402
$Errors #Bits BER
0 5400 0.0000E+0Q0
Time = 0.1100280E+02
$Errors #Bits BER
0 5500 0.0000E+00
Time = 0.1120280E+02
$Errors #Bits BER
0 5600 0.0000E+00
Time = 0.1140280E+02
$Errors #Bits BER
0 5700 0.0000E+00
Time = 0.1160280E+02
$Errors #Bits BER ‘
0 5800 0.0000E+00
Time = 0.1180280E+02
$Errors #Bits BER

0 5900 0.0000E+00

Time =
$§Errors
0

Time =
$§Errors
0

Time =
§Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =

#Errors
§]

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$Errors
0

Time =
$§Errors
0

Time =
$Errors
0

Time =
$#Errors
0

Time =
$Errors
0

0.12§6580€+02

$Bits
6000 0.
0.1220280E+02
#Bits
6100 0.
0.1240280E+02
§Bits
6200 0
0.1260280E+02
$Bits
6300 0
0.1280280E+02
#Bits
6400 0
0.1300280E+02
$§Bits
6500 0.
0.1320280E+02
#§Bits
6600 0.
0.1340280E+02
$Bits
6700 0.
0.1360280E+02
$#Bits
6800 0.
0.1380280E+02
#Bits
6900 0.
0.1400280E+02
#Bits
7000 0.
0.1420280E+02
#Bits
7100 0.
0.1440280E+02
$§Bits
7200 0.
0.1460280E+02
$§Bits
7300 0.
0.1480280E+02
§Bits
7400 0.

BER
0000E+00

BER
0000E+QO0

BER

.0000E+00

BER

.0000E+00

BER

.0000E+0QO

BER
0000E+00

BER
0000E+00

BER
0000E+0Q0

BER
0000E+00

BER
0000E+0QO0

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

BER
0000E+00

85
Time = 0.1500280E+02

$#Errors $Bits BER
0 7500 0.0000E+0Q0Q
Time = 0.1520280E+02
#Errors #Bits BER
0 7600 0.0000E+00
Time = 0.1540280E+02
#Errors $Bits BER
0 7700 0.0000E+00
Time = 0.1560280E+02
$Errors §Bits BER
0 7800 0.0000E+00
Time = 0.1580280E+02
$Errors $Bits BER
0 7900 0.0000E+00
Time = 0.1600280E+02
$Errors §Bit BER
0 BUUU U.VUUVUVUVUE+UU
Time = 0.1620280E+02
$Errors #Bits BER
0 8100 0.0000E+00
Time = 0.1640280E+02
$Errors $Bits BER
0 8200 0.0000E+0O0
Time = 0.1660280E+02
$Errors §Bits BER
0 8300 0.0000E+00
Time = 0.1680280E+02
$Errors $§Bits BER
0 8400 0.0000E+00
Time = 0.1700280E+02
$Errors $#Bits BER
0 8500 0.0000E+00
Time = 0.1720280E+02
$Errors #Bits BER
0 8600 0.0000E+00
Time = 0.1740280E+02
$Errors #Bits BER
0 8700 0.0000E+00
Time = 0.1760280E+02
$Errors $§Bits BER
0 8800 0.0000E+0QQ

Time = 0.1780280E+02
$Errors $§Bits BER
0 8900 0.0000E+0QO

Time =

$Errors
0

Time
$#Errors
0

Time
$Errors
0

Time =

$Errors
0

Time
$Errors
0

Time
$Errors
0

Time
$Errors
0

Time
$#Errors
0

Time
$Errors
0

Time
$Errors
0

8.6

.1800280E+02
§Bits

9000 0.
.1820280E+02
§Bits

9100 0.
.1840280E+02
§Bits

9200 0
.1860280E+02
#Bits

9300 0
.1880280E+02
$§Bits

9400 0.
.1900280E+02
$§Bits

9500 0
.1920280E+02
#§Bits

3600 0
.1940280E+02
#Bits

9700 0.
.1960280E+02
#Bits

9800 0.
.1980280E+02
$Bits

99040 0.

BER
0000E+0Q0

BER
0000E+00

BER

.0000E+00

BER

.0000E+00

BER
0000E+00

BER

.0000E+0CO

BER

.0000E+00

BER
0000E+00

BER
0000E+0Q0

BER
0000E+00

Appendix B

PROGRAMS IN C AND SIMULATION RESULTS F OR DATA FLOW OF SAMPLES IN THE
HARDWARE DESIGN OF MCRM

88

/* Hardware behavioural simulation for a Multiplexed
Carrier Recovery Module (MCRM) ¥*/

/* This program shows the data flow of samples for 8 channels
for an estimation period of 4 samples for each channel */

#include <stdio.h>

/%1 is Address Generator for Samples
agc 1s Address Generator for Channels
ARE is Enable for Accumulation RAM
SRE 1s Enable for Storage RAM */

main()

{

int adl=1;

int sd1=3;

int read_disable=0;

int 1=1,en=0,aen=0,sen=0;

int count,m,k,i,q,j,adder_I,adder_Q;
int age=0;

int h=1;

int I_temp,Q_temp;

int d=1,s=1,x=0,ARE=0,ctr=0,SRE=0;
FILE *fp,*fp1;

/* Allocate memory for RAMs AR & SR and ROMs OR & IR */
struct ram

int location[10];
b

struct ram Accumulation_RAM_I,Accumulation_RAM_Q;

struct doubleram
{
int location_S[9];
int location C[9];
b

struct doubleram Storage RAM;

struct rom
{
int location_S;
int location_C;
1

struct rom OQutput_ROM;

struct irom
{
int location_I;
int location_Q;
1

struct irom Input_ROM;

89

/* Initialize the memory locations */
for{(J=1;J<=9;J++)

Storage_RAM.location_S[j]=0;
Storage RAM.location C[j]=0;
Accumulation RAM I. location[j]:
Accumulation_RAM_Q.location[j]=0
Input ROM. location I= 0;
Input_ROM.location Q 0;

Output ROM. location S= O

Output_ROM.location _C=0;
}

3
)

/* Start the main program */

printf("Enter the count of Address Generator for Samples Please");
printf("\n");

scanf("%d", &count);

fp:fopen("sam.dat","r");

fp1=fopen("outcar.dat","w");

fprintf(fp1,"Enter the count of Address Generator for Samples Please");

fprintf(fp1, "\n");
fprintf(fp1, "count");
fprintf(fp1,"%2d", count);
fprintf(fp1,"\n");

for (k=1;k<=count;k++)
{
fscanf(fp,"%d",&i);
fscanf(fp,"%d",&q);
/* When the clock is negative #*/

Output_ROM.location_C=adder I;
Output ROM.location . _S=adder Q,
/* Read of AR enabled */
if gread_disable==1)
adder_I=Accumulation_RAM I. location[d]+Input ROM.location I;
?dder “Q=Accumulation _RAM Q. location({d]+Input ROM.location Q,

/* Read of AR disabled #*/
if (read_disable==z0)
{
adder_I=Input_ROM.location_I;
adder Q Input_ “ROM.location | Q,
h= h+1'
if (h>8)
{

h=h-8;
read_disable=1;

90

}
}

Input_ROM.location_I=1;

Input_ROM.location_Q=q;

if (SRE==1)

{ /* The clock is positive %/
Storage RAM.location_C[s]=I_temp;
Storage_RAM.location_S[s]=Q_temp;

s=5+1;

if §s>8)

/* Read input samples ¥/

s=s-8;
SRE=0;
}

}

I_temp=Output_ROM.location_C;
Q_temp=Output_ROM.location_S;
/* Write enable AR */
if gARE::1)
Accumulation_RAM_I.location[d]zadder_I;
Accumulation_RAM_Q.location[d]=zadder Q;
d=d+1;
if (d>8)
{
d=d-8;

}

}
/* Print the data state for all units %/

fprintf(fp1,"%3s %3s %3s %3s %3s %3s %3s %3s %3s %3s\n",
NAGS" , llAGC" ’ " IRI" ’ IIIRQ" ’ "ARI" ’ IIARQ" ’ "ORC" ’ HORSII ' OISRC" , "SRS") ;
for{(J=1;J<9;J++)

fprintf(fpt,"%2d",1);

fprintf(fp1,"%4d",age);
fprintf(fp1,"44d",Input_ROM.location_I);
fprintf(fp1,"44d", Input_ROM.location_Q);
fprintf(fp1,"%4d",Accumulation_RAM_I.location[Jj]);
fprintf(fp1,"%l4d",Accumulation_RAM_Q.location[]]);
fprintf(fp1,"sU4d",Output_ROM.location_C);
fprintf(fp1,"44d",Output_ROM.location_S);
fprintf(fp1,"%l4d",Storage_RAM.location_C[j])
fprintf(fp1,"%l4d",Storage_RAM.location_S[}]);
gprintf(fp1,"\n");

1=1+1;
/* Define the control circuitry */

if (en==1)

{

;f (1==H4) SRE=1;
if (1==2) ARE=1;
if (%>8)

1:(1-8);

agc=agc+1;

if (age==3) en=z=1;

if (age>3) agc=age-4;
if (agc==0) en=0;
printf("\n");

}
if (agec==0)
{
if (1==2) read_disable=0;
}
}
fclose(fp);
fclose(fp1);
}

91

92
INPUT FILE FOR MCRM

NANNT"T NN NNNNNNNNNNNNNNNNNNNN

o = T T T T T T G e e e O P P e g P e Y Y T v — o v— —

NANNTT AN NANNNNNANNNNNNNNNNNNNNNNN

= T T T T T Tt ™ e - T T T T Y T T T T v e — v— v y— —

NN~ N ANANNNNNNNNNNNNNNNNNNNN

T = - T e T T T T T YT YT T T T O YT e e e e g e g = g e

ANANNEre " ONANANNNNNANANNNNNNNNNNNNNNNN

T " T T T T T T e e e e T e e T T T Y — T — - —

NN e NN NNNVNANNNANNNNANNNNNNNANNN

= g S G g g g - Y e - P P T Y Y Y g v Qe g g g g g g e

NANN- -~ ONANNNNNNNNANNNNNNNNNNNNN

W T T P Tt e e Y e T T T T YT U Y e Y P g e g g g g g

NN~ AN ANNANNNNVNANNNNNNNNNNNNNNN

P T T T T T v e e T g e g e T - g - e = T e p— gy

NANNT AN ANANNANNNNNNNANNNNNNNNNN

e T T T T T T T T e e e e - T T T T Yy e g e - p— y—

NN ONNNANNANNNNNNNNNNNNNNNNN

W G e g e T e T T Y T g P Y Y e qTv e pen que e g g g g g e g

NANN" NN ANNNNNNANNNNNNNNNNNNNNN

T = T T T Y P P e e e e - T T T Y= Y = O - = e p— p— —

NN~ ANANNNNNNNANNNNNANNNNNNNNN

Ll R I I R I i o e T e S ——

NANAN" N ANNNANNNNNNNNANNNNNNNNNN

= T T T T T P e e e - e e T Y T T Y T T e e g - p— g— —

NN QAN NNANNNNNNNNNNNNNNNNNN

T T e T T T T T T O P O O T T e T e e e g = g .

NANN T~ AN ANNNNNNNNNNNNNNNNNNNNN

T T T T T T e T T T T T T T T e T Y= = Y Y= = = ™ (e = = =

NANN~" N ANNNNNANNNNNNNNNNNNNNNN

T W C T T e T P T G e e T g e e e T T e g e e -

93

OUTPUT FILE OF MCRM

Enter the count of Address Generator for Samples Please

countb65

72} n)
[8] Q Q Q [8] [®)
0 2] 9 2 4 &2
KOOOOOO0OO0OO COO0OO0OO0COO0OOXELNNNNNNNNEEANNNNNNN NANNNNNNNEDNNNNNN
(o o o o o O
(&) (&) (&} O (& (&)
o o o (e Qo (e}
(@ 4 [« g [g (e o o
— Las) = L] b=t 4
ROOOOOOOOR.IOOOOOOOR.IaIOOOOOOanlal100000R14I¢I1|0000R¢I1-11|10
< <t <C < < <
o o 4 g 4 4
— - — [[—
R1l4|11111.!¢|R11111111R11111111R11111111R11111111R111111
[— = - - -
12] 2 (2]) |2} 2]

94

2] n 0 0 2}
(&) (@) O O Q (&)
m 2] 2] 1’2})
NN NANANANNNNNEDNNANNNNNNDNNNNNNNN NANANNANNNNEGDT 0SS srsr=r
o o o (o (o] O
O Q Q O (&} |8
O o O (&} (o o
o o (o 4 o o o
— — - [- —t
OO0 err 000 rr O r~rrrrrr—rr e N~ e e NN e NN N ™ —
<T <t < <X < <
o o (o 4 o o o
L. - — - by —
Lot * R o i i o B o ¢ I i Bl e i Y o Al i i i i Sl o A I R « AR i ad it R i « AR i i
et [] — [—

<n <g <t < L1 <

2] 12} 2] 2] 12} 2]

95

n 12} vl

Q O O O Q (&}

2 2 &2 2 2

[8] Q [& Q O O
NANENNNNNNNAUNEDNNNNNNNNENANNNNNNNDNNNNNNNNEENNNNNNNNNEGENNNNNN

Qo (o] (&) o (&) Q

e 4 o e 4 o o o

-~ L] —t = —4 -

(@ 4 (e 4 o g (o 4 o
— —t -4

— - — —t L -
11lR1|1l¢|14|4|11R11111111R11111111R11111111R11111111R111111
— — - - g —t

< L= < <t <1 <t

2] 2] 2] 172} 12} v

96

2] 2] V)
00%00000000“00000000%000000OOH00000000%00000000%000000
O |8 O O O O
00%0000000OﬂO0000000&00000000%00000000ﬂOOOOOOOOﬂOOOOOO
m m v) 2] e} 72}
uu~066666666066666666W56666666%66666666%56666666%666666
O | @) O O &) &
22%33333333% 33333333% 33333333% 33333333% 33333333% Mmoo
o o o o o o
uuMG’OM-.H.H.H.N-.H.M,D,DG”H,"H.H.M6666.4n4.4n~.mnn66666.4..4u.m56666534ﬂ666566

o] 4 — — -t —t

o [« 4 o (e 4 o o
4

L] =4 —t =4 L) -
11Du4|¢|1¢|¢|-.l||.1IR1I1.1:4|1|4|4|1R1|4|¢|¢|1111|R¢|11..4|1111R11111111R111111
L) [] - =t by Pl

Q Q Q

v2 12} 2] n 2] 0

97

172}

v}
O O &) O (8] O
v w0 2] m 2} 2}
[&] Q |8} Q Q &)
o o o [« 4 (@ 4 o

L — - -~ -t -

o o (e 4 o (e 4 o

L) — — — — -
¢|1R1Iq|¢l.1¢|¢|1I¢IR111¢|1111R¢|1111111R11111111R11111111R111111
i — [o] —t () []

Q Q

12} 12} v) 172} 2

98

2] 2] 12} 2] 172]
QOO OOOO 00000000 O OO KOO0 00000000 OO 00000 0000000000 O K o000 00 000 a0 00 00 00 00 0

wv) 2} (2}) 2] 2]
O Q (&} O O |8
|2} N

|8 @] Q O 8] Q
o (= 4 o (e 4 o m

- - — L] Lo =

o o (o 4 o o je 4
-

- - i — —4 =4
- et - - et =

Q Q

v) n n) 7))
66M77777777%88888888%11111111%22222222%33333333%44”“””

99

0 |2} 2] 172]
Q Q Q O (&) O
N.w 2] v 2] 2] m
(@] Q Q O [&) O
Pl o AR R o ol o oA i B i i o ool s ol el i il i i & vl R el it ¢ AR i el i i i o il “I i el B B o
(@] [»] (@] o o o
o (@ 4 [4 (¢ (@ 4 [« 4

— - bt L) - e}
- A e s - i it i o P~ - o Al i o ol s A il Ll e i i Al el e A Bt o o
<€ <t <t =< - <<

o o o o o (e 4
-4 — — -4 -t L]

Dl ol s AR i i i i el o R B Rl gl oo B i o e B ol B ol ol K s att * “H ol el i i L B S o ol i i B s o i S ol o
(] - L) - —y 4

Q

2] v) 12} 12] 2])

100

12}

(2]

(&) Q 8] O [&] O
1’2} 12} 2] m v
(&) [@) Q @] Q [®)

o o o o o (o g

e — — — —’ —

o o o oY o o
22m22222222R22222222R22222222R11111111R11111111R111111

L] -t L) — L)

L] Lage) -1 L} —)

—t - (] =t L] —t

=g < << <t < -

2] 12} 2] (2} 2] 12}

101

n 2]
O O O QO Q O
2 2 2 2 2 2
(& 6] O 0 O O
o o o (e g o o

—t -t — — —t 4

(e 4 o o o o o

1¢|R11111111R11111111R11..11!114!1R11111111R11¢|11¢|11R1l4|¢|1l11-
- - -t - - -t

— — — bt — —
1|¢|R1Ii|1l1la|1|4|1IR4|1l1¢|1..||4l4|Dna.l1..1|1|1|4|11R11111111R11111111R1114I.a|¢|
(] (o] - — =t -

Q [Q Q

v 12} 12} 2] [2] 2]

102

2] n 2]) v
©0 00 X 00 00 00 00 0O 00 00 00 00 00 00 00 00 00 00 00 £ 00 00 00 00 00 00 00 00 X 00 00 00 00 00 00 00 00 A= 00 00 00 €0 00 00 00 00 (X \O 00 00 00 00 0O

(2] 72] 2] (2] v} 12}
(&} Q @) Q &) (&)
2} 2] 12} 2] 0
(8] (&) &) O Q O

[« 4 [4 o je 4 o je g

- -] -~ - et

[« 4 (@ 4 o e 4 (@ 4 o

- Lo} L] - -4 Lol

— - L] — L] L)
11R11111111R11111111R11111111R11111111R11111111R11-11!1.!1

- - L] [aa} - -

& Q O Q

2] 1] 12} 12} 12} v)

103

) n

Q O Q Q Q
2] 2] ¢ wv m
O O | &} Q O
o [g o o o

— — - = —
33mﬂnnﬂ.u.u....433333.4.4.4443333.4“-...4.4....1.4))3).{4|f|ftoo.vlf‘ .
\.n An

< :
o o o o o

11R4|14|1111.|R1111111alRal4I.111111R11111111R11111111
L) - L] L} Lo]
— — Lo L by
¢|4|R1l1..1|¢|-|1.|al.R4|¢|¢|1|||4|1I1Ra|1l14|¢.l1||I1R4|4.|1I-|11|4|1|R1111|¢|4|.¢|1
-4 Lo L) L] -

<

2] 12} [2] 2
A

104

Appendix C

PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF SAMPLES
IN THE HARDWARE DESIGN OF MRBS

105

/* Hardware behavioural simulation for Multiplexed RAM
Buffer for Samples (MRBS) #/

/* This program describes the data flow for storage of
input samples for 8 channels for an estimation period of
4 samples for each channel */

/* agc is Address Generator for Channels
1 1is Address Generator for Samples */

#include <stdio.h>
main()

{

int 1=1;

int agc=0;

int count,m,n,k,i,j;
FILE *fp,*fp1;

/* Allocate memory for RAMs */

struct rambuffer

{

int latch;

int location[9];

};
struct rambuffer ram(5];

/* Initialization of memory %/
for (i=1;i<=l;i++)
{

for{(j=1;j<=8;j++)

ram{1].location(j]=0;

}
ram[i].latch=0;

/% Start Main program %/

printf("Enter the count of Address Generator for Samples Please");
printf("\n");

scanf("%d",&count);

fpi=fopen("outram.c","w");

fp=fopen("sampl.c","r");

fprintf(fp1,"Enter the count of Address Generator for Samples Please");
fprintf(£fp1,"\n");

fprintf(£fp1, "count");

fprintf(fp1, "%2d", count);

fprintf(fp1, "\n");

for (i=1;i<=count;i++)

{
fscanf(fp,"%d",&k);
ram(1].latch=k; /* Memory read %/

for (m=2;m<5;m++)

ram[m].latch=ram{m-1].location[1];

106

}

for (m=1;m<5;m++) /* Memory write %*/

ram{m].location{1]=zram[m].latch;

}
/* Display MRBS structure */

fprintf(fp1,"%3s %3s %#3s %3s %3s %3s %3s %3s %3s %3s\n",
"AGSI' , "AGC" ’ "LA 1 " ’ "RA 1 " , "LA2" ’ "RAZ" , "LA3" , "RA3I| ’ "LA“" , "RAu") ;
for (j=1;3<9;j++)

{

fprintf(fp1,"%2d",1);
fprintf(fp1,"%U4d",age);
for (n=1;n<5;n++)

fprintf(fp1,"%4d",ram[n].latch);
fprintf(fp1,"%4d",ram{n].location[j]);
}

fprintf(fp1,"\n");
}

/* Increment AGC and AGS */
1=1+1;
if (1>8)
{
1:1-8;
agc=agc+1;
%f (age>3) agc=age-U4;

}
fclose(fp);

fclose(fp1);
}

INPUT FILE F(Bg ‘1\7/IRBS

01 02 03 O4 05 06 OT 08 11 12 13 14 15
16 17 18 21 22 23 24 25 26 27 28 31 32
33 34 35 36 37 38 41 42 43 U4 45 46 47
48 51 52 53 54 56 57 58 61 62 63 64 65
66 67 68

108

OUTPUT FILE OF MRBS

Enter the count of Address Generator for Samples Please

count30

= == = =t =
00000000“00000000MOOOOOOOOMOOOOOOOOM00000000“000000
= = = = =t
0000000OMOOOOOOOOMOOOOOOOOMOO000000“00000000“000000
o [ap) o o (s
00000000“0OOOOOOOM00OOOOOOMOOOOOOOOMOOOOOOOOMOOOOOO
o o o (58] (28]
OOOOOOOOMOOOOOOOOM00000000.Aln_OOOOOOOQMOOOOOOQOMOOOOOO
3] o o o N
0000000Onnnno0000OOOMOOOOOOOOMOOOOOOOO 00000000“000000
N o o N N
00000000“00000000MOOOOOOOOMOOOOOOOOM00000000“000000

— -— -— - -—

L and -— -— - -

2] 2] 2] 2] 2]

AGS AGC LA1 RA1 LA2 RA2 LA3 RA3 LA4 RAY

109

= = = == = =

= = = = == =

o o o o o o

o) o o o o) o

N (3"} N N N N

N N N AN N N

-~ - -— - - -
00A¢|23Mﬂ5670A¢|23.45678A123.45678A123“5678A123u5678m123"—.56

[+ 4 o o — o e v oo — — — - e -

-— -— -— L ol - -
OO €= <C 0000000000000 L+~ — — v v v +— v NN NN N < OO ON 0NN (NN < =F ST ST =T 5T =1

- | B ol i et ad i i s Bl il B el it BB o i adi R B R

O Q m (] Q (&7
eNolbNoNeoNoNsNeoNoNoNeoRbNeoNo ool oNoloXe] Lol il il & I Sl ol el el el el o BB il Sl B B B e BB Rl

< <t < <t < -

12} (72} 2] 2] [2] 172

110

= = =r . = = =
OOAOOOOOOOOA00000000MOOOOOOOOMOOOOOOOOAOOOOOOOOAOOOOOO

oo o =4 o
= == = = = ==
™ o o o o o
o o o) o (48] o
N N N [9Y] [g)] [y]
~ [+ = - [+ Al o
[gV] N N (3] N N
TTTONNDNDIDNNINCEODOOVOOVOVOOVO TtttV <€ v v v — — ——ad NONNNNN
3 3 N | b | _ T e e]
-— - -— -— -— -
78“123“56785_“123“&5678A¢|23Mﬂ5678A12345678A123"~.5678A123“56
— - K~ ™ — — D — — — [o ol ol i il S R el s A VIR B B s A oV I o VI R
- — -— - - -
TN INNIDNCOOVOOVOOOOCTE-=t=-t=-t=--t~<000NNNN < —r—vr—r—r——— G NAUNNNNN
-] e] — — T e Jemrrrrcrrmr e JTONNNNNNANNONNNNNN
<t <C <t < <€ <€
2] 2] v 12}) |2}

x>
waoamN
[%]
=
(9]

>
(7
>

O

>
7]
Q

b
[7,]
d
MO POPPODNDONAOND DDA ODODNNOONDN

b
n
>

-
ooooooooooooadsxﬂszﬂqqﬂoo\mmmmmmc\ommmuummmmo::z:zz:zouwwwwww

b g

Q

22
22
La1
23
23
23
23
23
23
23
23
LA1
24
24
24
24
24
24

24
LA1
25
25
25
25
25
25
25
25
LA

26
26
26
26
26
26
26
LA1
27

27
27

27
27
27
LA1
28
28
28
28
28
28

17
18
RA1
21
22
23
14
15
16
17
18
RA1
21
22
23
24
15
16
17
18
RA1
21
22
23
24
25
16
17
18
RA1
21
22
23
24
25
26
17
18
RA1
21
22
23
24
25
26
27
18
RA1
21
22
23
24
25
26

111

7 2 0 0 O
8 2 0 0 O
RA2 LA3 RA3 LAY RAY

1 3
12 3
13 3
4 3
5 3
6 3
7 3
8 3
RA2 LA3

(O8]

r
:OOOOOOOO;OOOOOOOO
= =
:DOOOOOOOO:OOOOOOOO

=

RA2 L
"
12
13
14
15

w

w

c
EOOOOOOOO

=
=

RA2 L

w
c

w
4 4 = =
COOWNEZTWN — COONEWN-2PPO0OO000EWN - OO0OO0OO0OO0OWN =

4=
o]
=

w
w
=

——h
&=
OO0 11N-3J11>PO0COOOONONRTUVIUVNIVUIVIVIVIUIU > = = b
=

COO0O0O0OPOOO0OO0OOOPrPrO0O00O00O00COX»PO00000000
[el~R=NoNoNoh JoloNoNoNooNoNoh JoNoNoNeNoNoNo ol

CONEWN=DONAN WA -

>
W
>

[y P S O O OO o W s« J e o

>
[7,]
k-

g
wwwawwmwwwwm
=

QWwWwww

> >
n (7]
> >

>
mmmmmmammmmmmmmoz:z::z:z
>

8!\)!\)

28 27
28 28
RA1
31
22
23
24
25
26
27
28
RA1
31
32
23
2l
25
26
27
28
RA1
31
32
33
24
25
26
27
28
RA1
31
32
33
34
25
26
27
28
RA1
31
32
33
34
35
26
27
28
RA1
31
32
33
3y
35
36

18
18
LA2
21
21
21
21
21
21
21
21
La2
22
22
22
22
22
22
22
22
LA2
23
23
23
23
23
23
23
23
LA2
24
24
24
24
24

24
24
LA2
25
25
25
25
25
25
25
25
LA2
26
26
26
26
26
26

17
18
RA2
21
12
13
14
15
16
17
18
RA2
21
22
13
14
15
16
17
18
RA2
21
22
23
14
15
16
17
18
RA2
21
22
23
24
15
16
17
18
RA2
21
22
23
24
25
16
17
18
RA2
21
22
23
24
25
26

112

8
8
LA3

1
11
11
11
11
11
11
11
LA3
12
12
12
12
12
12
12
12
LA3
13
13
13
13
13
13
13
13
LA3

14
14
14
14

14
14
LA3
15
15
15

15
15
15
15
LA3

16
16
16
16
16

- 20
(W%
-
=~
X
=

O~1ON LEZWN = > 00~

POOO0OCODOOO-2»00

=
X
=

BPOOOOOON -

jns]
=
w
[
=
pas]
&=

PLWWWWWWWWENNONNNNODNDMONDD - b a2 aDbp0OO

BPOOOOOWN =

-—d ek —d -) b and b
oo«rmm:-—wm-a&ooﬂmmr_-wm-
|
&
=
F—

EOOOO-&:U@N—-

F—
=

RA3 L

O\G\O\O\O\O\ZU\WU\UIU\U\WWD#:J:kJ:J:#'J:
X

N EWN =200 0NEWN =

113

6 3 36 27 26 17T 16 T 6 0
6 3 36 28 26 18 16 8 6 O

114

Appendix D

PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF SAMPLES IN
THE HARDWARE DESIGN OF MDRM

115

/* Hardware behavioural simulation for Multiplexed
Data Recovery Module (MDRM) */

/* This program describes the data flow in the MDRM
for 8 channels and 4 sample estimation period #*/

#include <stdio.h>

/* agc is Address Generator for Channels
1 1is Address Generator for Samples ¥*/

main()
{ /% Initialize variables %/
int 1=1,d=1;
int we=0,agc=0;
int count,m,k,i,j,q,s,c,I_inv,Q_inv;
FILE *fp, ¥*fpi;
int mult{5];
int add,sub,latch(3];
/* Define DDR memory structure ¥*/
struct r?m
int location_I{9];
int location_Q[9];
};
struct ram DDR;
/% Iniatialization ¥*/

for{(j:l;j<9;J++)

add=0;

sub=0;
latch{1]=0;
latch[2]=0;
DDR.location_I[]
?DR.location_Q[J

printf("Enter the count of Address Generator for Samples Please");
printf("\n");
scanf("%d",&count);
fp=fopen("sadat.c","r");
fp1=fopen("outdat.c","w");
/* Start main program %/

]
]

fprintf(fp1,"Enter the count of Address Generator for Samples Please");
fprintf(fp1,"\n");

fprintf(fp1, "count");

fprintf(fp1, "%2d", count);

fprintf(fpt,"\n");

/% Describe data flow #*/
for (k=1;k<=count;k++)

116

{
fscanf(fp,"%d",&1);
fscanf(fp,"%d",&q);
fscanf(fp,"%d",&s);
fscanf(fp,"%d",&c); /* clock is negative */
latch[1]=add;
latch[2]=sub;
add=mult{1]+mult[2];
sub=mult{3]-mult{4];
mult{1]=1i%c;
mult[2]=q*s;
mult[3]=q*c;
mult[4]=1i%*s;
/* clock is positive ¥*/
if %we:=1)
DDR.location_I[d]=I_inv;
DDR.location_Q[d]=Q_inv;
d=d+1;
;f (d>8) d=d-8;

I_inv=latch(1];
Q_inv=1atch[2];
/* Print output of MDRM units */

fprintf(fp1,"%3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s\n",
llAGS" s IIAGC" ’ IOMU 1 1t ’ llM’UZ" , "MU3" ’ "HUL‘" ’ I!ADD" , l'SU‘B" ’ "LA 1 1" ’ !ILAZ" , "DDI" , "DDQ") ;
for (Jz1;j<9;j++)

fprintf(fp1,"%2d",1);
fprintf(fp1,"%4d",age);
fprintf(fp1,"%4d",mult(1]);
fprintf(fp1,"%4d",mult(2]);
fprintf(fpt,"%4d",mult[3]);
fprintf(fp1,"%44d",mult[4]);
fprintf(fp1,"%4d",add);
fprintf(fp1,"%4d",sub);
fprintf(fp1,"%ld",latch[1]);
fprintf(fp1,"%Ud",latch(2]);
fprintf(fp1,"%4d",DDR.1location_I[j]);
fprintf(fp1,"44d",DDR.location Q[j1);
gprintf(fp1,"\n");

fprintf(fp1,"\n");
1=1+1;
if (1==4) we=1;
%f (1>8)

1=1-8;

agc=agc+1;

if (agc>3) agc=agc-4;
grintf("\n");

}

117

fclose(fp);
fclose(fp1);
}

118

INPUT FILE FOR MDRM

9 10 11 12
9 10 11 12
9 10 11 12
9 10 11 12
9 10 11 12
9 10 11 12
9 10 11 12
9 10 11 12
9 10 11 12

78
78
78
78
78
78
78
78
78

\O O WO WO WO \WO WO \O O
UaNTaRiaNaRTaRIaNTa RTa Wy}
LS M S P g g - g~
Mmoo
NN ANNNNANNN

- e = - — —

119
OUTPUT FILE OF MDRM

Enter the count of Address Generator for Samples Please
count20

AGS AGC MU1 MU2 MU3 MUY ADD SUB LA1 LA2 DDI DDQ

0

[eNaNeoNoRoNoNoNe
E -y -
[o Yo W We Wa e, Wo, Wl
00 00 00 00 00 00 OO0 0o
WWWwWWWwwWww
00000000
[eNoNoNoNoNoNoRo]
QOOO0OO0O0O0O0
0OO0O0OO0O0DO00O0
[oNeNoNoNo N

ko

OOOOOOOO%
=
o

1 MU2 MU3 MUY4 ADD S
4o 42 48 35 10
4o 42 48 35 10
42 48 35 10
4o 42 48 35 10
4o 42 48 35 10
4o 42 48 35 10
4o 42 48 35 10
4o 42 48 35 10

w
[

00000000 >
—-—

-
OOOOOOOO% [eNeNeoNeNoNoNoNe]
o
—
=

00000000 U
OOOOOOOOS

(GRS, 6, O, N6, R RS R}

AGC MU1 MU2 MU3 MU4 ADD SUB LA1 L

GC
0 108 110 120 99 82 13 10
0
0

n
[=]

0O00O00OO0OO0OO0OU
=
[

b g >
w0 MOV NDNDDO - arh ek b b -
7] 7
OOOOOOOOS

108 110 120 99 82 13 10

108 110 120 99 82 13 10
0 108 110 120 99 82 13 10
0 108 110 120 99 82 13 10
0 108 110 120 99 82 13 10
0 108 110 120 99 82 13 10
0
G

(NG, NS, N RS, RS RE RS g

108 110 120 99 82 13 10

e
(7]

AGC MU1 MU2 MU3 MU4 ADD SUB LA1 LA2
3218 21 82 13
3218 21 82 13
3218 21 82 13
3218 21 82 13
3218 21 8 13
3218 21 82 13
3218 21 8 13
3218 21 8 13

S EEEQ Wwwwwww
[X Yo aWe N W W N
00 00 00 00 00 00 00 OO
-
OOOOOOOOE
=)
OOOOOOOU\S

0
0
0
0
0
0
0
0

(] = =
é SsEEEEEEE

>
7]
x>

1 MU2 MU3 MU4 ADD SUB LA1 LA2 DDI D
4o 42 48 35 10 218 21 10

4o 42 48 35 10 218 21 82 1
k2 48 35 10 218 21 0
40 42 u8 35 10 218 21 0
4o 42 48 35 10 218 21 O
4o 42 48 35 10 218 21 0
4o 42 48 35 10 218 21 0
4o 42 48 35 10 218 21 0

(SIS NS, RS
OOOOOOOOS
-4
o
OOOOOOUJU’IS

(G, NGNS RO RS R R, RN

E-d
(- Wep) (G R R RN)]

S AGC MU1 MU2 MU3 MU4 ADD SUB LA1 LA2 DDI DDQ
0 108 110 120 99 82 13 10 5 10 5

[s e We We Wa We Wea,l

b
(9]
(2]

AGS

A

— et b et s a) 000000000000 00 00 QA =3 =d~d =1~~~

A

MO NDNDDNDNDO

kg
[eNeoNeNoNeNoNeoNeNol [eNeReNeoNoNoNe

A

[eNeoNoNeNoNoNeRoNey)

G
1
1
1
1
1
1
1
1

G
1
1
1
1
1
1
1
1

R N QA QR Qs §

108
108
108
108
108
108
108

EEEFEEEEEEE

4o
4o
4o
4o
4o
40
4o
ko

108
108
108
108
108
108
108
108

S&
o EEEEEEEE

110
110
110
110
110
110
110

6

[o W e W e e, We We e)

42
42
42
42
42
y2
42
42

110
110
110
110
110
110
110
110

o O

120
120
120
120
120
120
120

C MU1 MU2 MU3

00 00 00 0o 0o 0o 00 0o

C MU1 MU2 MU3

S AGC MU1 MU2 MU3

120
120
120
120
120
120
120
120

S AGC MU1 MU2 MU3

00 00 00 00 00 0o OO 00

MUY

120

82
82
82
82
82
82
82

ADD

3 218
3 218
3 218
3 218
3 218
3 218
3 218
3 218

MUY
35
35
35
35
35
35
35
35

MUY
99
99
99
99
99
99
99
99

ADD
10
10
10
10
10
10
10
10

ADD
82
82
82
82
82
82
82
82

MU4 ADD
3 218
3 218
3 218
3 218
3 218
3 218
3 218
3 218

MUl
35
35
35
35
35

ADD
10
10
10
10
10

13
13
13
13
13
13
13

SUB
21
21
21
21
21
21
21
21

SUB

(RO RE,RH RS, RS, RS, RS))

SUB
13
13
13
13
13
13
13
13

SUB
21
21
21
21
21
21
21
21

SUB
5
5
5
5
5

10
10
10
10
10
10
10

LA1
82
82
82
82
82
82
82
82

LAY
218
218
218
218
218
218
218
218

LA
10
10
10
10
10
10
10
10

LA
82
82
82
82
82
82
82
82

LA
218
218
218
218
218

[EE RS, R, N6, NS RE))
oNoNeoNoNole NV

LA2 DDI
13 10
13 82
13 218
13 10
13 0
13 ©
13 O
13 0
LA2 DDI
21 10
21 82
21 218
21 10
21 82
21 0
21 O
21 0

LA2 DDI
10
82

218
10
82

218

0
0

(LRG RS RV, R RE, RE R |

LA2 DDI
13 10
13 82
13 218
13 10
13 82
13 218
13 10
13 O

LA2 DDI
21 10
21 82
21 218
21 10
21 82

21

[eNeoNoNoNe]

D

N wa
OOOOU’!-M.»U‘S

= O

DDQ

13
21

13

(PSR RO

A

=0

>
UIUIUIU'IU'Ia R i -
I

>
0 OO VWM
« »n
b >

>

>
WEEEOEM®EA NN
>

- and b

_t..a_a_n..a_n—;_bg

GC
1
1
1
1
1
1
1
1

8

ol e el e owd b amd aed

4o 42 48
4o 42 48
4o 42 48

108
108
108
108
108

MU1 MU2 MU3

108
108
108
108
108
108
108
108

MU
y
n
4
y
y
y
y
y

110
110
110
110
110
110
110
110

42
42
42
42
§2
42
y2

110
110
110
110
110
110
110
110

[o N e Wa We Wa We W,

S AGC MU1 MU2 MU3

120
120
120
120
120
120
120
120

120
120
120
120
120
120
120
120

00 00 00 00 00 00 00 00

MUY

121

10
10
10

ADD
82
82
82
82
82
82
82
82

ADD

3 218
3 218
3 218
3 218
3 218
3 218
3 218
3 218

MUY
35
35
35
35
35
35
35
35

ADD
10
10
10
10
10
10
10
10

ADD
82
82
82
82
82
82
82
82

1 MU2 MU3 MUY4 ADD

3 218
3 218
3 218
3 218
3 218
3 218
3 218
3 218

5
5
5

SUB
13
13
13
13
13
13
13
13

SUB
21
21
21
21
21
21
21
21

SUB

(O RERE R N NS NS R]

SUB
13
13
13
13
13
13
13
13

218
218
218

LAt
10
10
10
10
10
10
10
10

LA1
82
82
82
82
82
82
82
82

LAY
218
218
218
218
218
218
218
218

LA1
10
10
10
10
10
10
10
10

LA
82
82
82
82
82
82
82
82

21 218
21 10
21 82

LA2 DDI
5 218
5 82
5 218
5 10
5 82
5 218
5 10
5 82

LA2 DDI
13 218
13 10
13 218
13 10
13 82
13 218
13 10
13 82

LA2 DDI
21 218
21 10
21 82
21 10
21 82
21 218
21 10
21 82

LA2 DDI
5 218
5 10
5 82
5 218
5 82
5 218
5 10
5 82

LA2 DDI
13 218
13 10
13 82
13 218
13 10
13 218
13 10
13 82

21
13
DDQ
21

13
21

13
21

13

DDQ
21

21

13
21

13

DDQ
21

13

13
21

13

DDQ
21

13

21

13
21

13

DDQ
21

13
21

21
13

122

AGS AGC MU1 MU2 MU3 MU4 ADD SUB LA1

1

> - g
kg
NNNNNMNNS

k#k#:k##a w
>

MOV

AGC
2
2
2 108
2
2
2
2
2

Q

DO N

MU1 MU2 MU3

108
108

108
108
108
108
108

-:’J:J'—‘J:J'—’J:J:‘J:é

C MUt MU2 MU3

42
42
42
42
42
42
42
42

110
110
110
110
110
110
110
110

1 MU2 MU3

(oAl e W e We Wa Wa We We)

42
b2
42
y2
42
42
42
42

120
120
120
120
120
120
120
120

00 0o 0o GO OO0 00 00 0o

48
48
48
48
48
48
48
48

35
35
35
35
35
35
35
35

MU4 ADD

10
10
10
10
10
10
10
10

(SR RS BT RE RS, RE, R |

218
218
218
218
218
218
218
218

ADD SUB LA1

82
82
82
82
82
82
82
82

3 218
3 218
3 218
3 218
3 218
3 218
3 218
3 218

MUY4 ADD

10
10
10
10
10
10
10
10

13
13
13
13
13
13
13
13

SUB
21
21
21
21
21
21
21
21

SUB

(SRS NE NE, KU, N, RS, NE) |

10
10
10
10
10
10
10
10

LA1
82
82
82
82
82
82
82
82

LA
218
218
218
218
218
218
218
218

LA2 DDI
21 218
21 10
21 82
21 218
21 10
21 82
21 10
21 82

LA2 DDI
5 218
10
82

218
10
82

218
82

[RCIRGRE NS, NG, N}

LA2 DDI
13 218
13 10
13 82
13 218
13 10
13 82
13 218
13 10

LA2 DDI
21 82
21 10
21 82
21 218
21 10
21 82
21 218
21 10

DDQ

DDQ

DDQ

DDQ

123

Appendix E

PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF SAMPLES IN THE
HARDWARE DESIGN OF MTRM

124

/* Hardware behavioural simulation for Multiplexed
Timing Recovery Module (MTRM) #*/

/* This program describes the data flow in the MTRM for
8 channel & 4 samples used for periodic estimation %/

#include <stdio.h>

/%1 is Address Generator for Samples
agc 1s Address Generator for Channels
te 1is enable for Timing RAM */

/% Define memory for the RAMs #*/

struct rambuffer
{
int latch;
int location[9];
b

struct rambuffer ram_i[4],ram_q[4];
struct storage

int location(9];
b
struct storage Timing RAM;

main()

{

/* Start main program */

int LI#=0,LQU=0,1isub=0,qsub=0,add=0,adder=0,imult=0,qmult=0;
int temp=0,idumLatch=0,qdumLatch=0;

int 1=1,d=1,dd=0;

int h,p,count,m, j,agc=0;

int te=1,le=0;

int dummy=0;

int dum1=0;

int deli1,del2,del3;

FILE *fp,¥*fp1;

int I_s,Q_s,i,y;

printf("Enter the AGS please");
printf("\n");
scanf("%d",&count);
fp=fopen("tim1i.dat","r");
fpi=fopen("outtim.dat","w");
for§y=1;y<9;y++)

ram_i[3].location{y]=0;
ram_i[3].latch=0;
ram_q(1].location[1]=0;
ram_q[1].latch=0;

125

}
fprintf(fp1,"Enter the AGS please");
fprintf(fp1,"\n");
fprintf(fp1, "Count");
fprintf(fp1,"\t");
fprintf(fpt, "%2d", count);
fprintf(fp1,"\n");

for (i=1;i<=count;i++)
/* Input from MDRM */
fscanf(fp,"%d",&I_s);
fscanf(fp,"%d",&Q_s);

/% Data flow in the RAM latch design */
ram_i(1].latch=I_s;
ram_q(1].latch=Q_s;
for (m=2;m<4;m++)

ram_i(m].latch=ram_i[m-1].location[1];

}
LIY4=ram_i{3].location[1];
for (m=2;m<4;m++)

ram_q[m].latch=ram q{m-1].location[1];
}

LQ4=ram_q{3].location(1];
adder=add + Timing_RAM.location[d];
/* Store data in TR */
add=imult+gmult;
imult=isub*idumLatch;
gmult=gsub*qdumLatch;

for (m=1;m<Y;m++) /% Clock is positive #*/
ram_i[m].location[1]=ram_i[m].latch;

for (m=1;m<l;m++)
ram_q[m].location{1]=ram q(m].latch;

/* Data flow in RAM latch */
idumLatch=ram_i{3].latch;
qdumLatch=ram_q[3].latch;
isub=ram_i[2].1latch-LI4;
gsub=ram_q[2].latch-LQ};

/* Control circuitry */

if (dd==1)
{

%f(l::ﬂ) le=1;

126

if (le==1)
{
if gte:=1)
Timing_RAM.location(d]=adder;
d=d+1;
if (d>8)
{
d:(d-S);
te=2;
}
}

if (te==2)
{
d=d+1;
if (d>8)

{
d:(d—8);
te=1;

}

/%* Print data flow in the MTRM ¥/

foE (h=1;h<2;h++)
fprintf(fp1,
"%3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s\n",
I'AGS" s "AGC" ’ "LI3" ’ "RI3" s llLIu'l ’ "ISB" ’ "IML" ,
"LQ1 " ’ llRQ] 7" ’ llLQ)_;" ’ "QSB" , "QML" ’ "ADDI' , "AER" ’ I!TIR") ;

for{(j=1;j<9;j++)

fprintf(fp1,"%2d",1);
fprintf(fp1,"%4d",age);
fprintf(fp1,"44d",ram_1i[3].latch);
gpringgégp:,ﬂt:g;ariﬁn§[3].location[J]);
printf(fp1, ’ ;

fprintf(fp1, "gU4d",isub);
fprintf(fp1,"4ldd",imult);
fprintf(fp1,"44d",ram_q[1].1latch);
gprintgggp},zzzg:,igﬁyq[1].location[j]);
printf(fp1,) ;
fprintf(fp1,"%4d",qsub);
fprintf(fp1,"4l4d",qmult);
fprintf(fp1,"44d",add);
fprintf(fp1,"44d" ,adder);
fprintf(fp1,"%4d",Timing_RAM.location(j1);
?printf(fp1,"\n");

/* Define Control Logic */

1=1+1;

if §1>8)

1=1-8;

agc=agc+1;

if (age==3) dd=1;

%f (age>3) agc=age-4;

printf("\n");

}
fclose(fp);

fclose(fp1);
}

127

128

INPUT FILE FOR MTRM

MO AN NN NN AN
NANNN™ -
—e e e N NNANNNNNAN
MMM ™ ™ ™ ™ ™ ™ e

NNANNTT e~ ANNNNNNNN

e - = T - g e = - e~

NN NN ANNNNNNN
ANAOANQNQN™ ™™ ™™ = v v ™ @ v~
e ONNNNNNNNN
NN ™ ¢ =T T -
NNNANS 0NN NANANNANANNN
Ll B e i i e ol e i ol ool Sl ol o
MO~ AN ANNNNNNNN
ONONAQO QN ™ — ™ ™= ™ ™ ™ ™ ™ ™ 7™ v

e e NN ANNANNNNNNN

MMV ™ ™ ™ ™ 7™ ™ ™ v

NANNN~ e ONNNNNNNNNN

T T T e T P Y Y g e P T e g e

NN — e NANNNNNNNN

CNNONONN ™ — — == v v v v v v

—rr e NN NANNNNNN

MO = = v ™ v

NONNN——e—— ANNNNNNNNN

P R I ol el st ek . s el e 2l i i

NN Me e NN NNNANANANAN

NN ™ v o v v v = — —

e e NNOANNANNNANNN

NN v v v v = v = — - =

NANANN~ AN ANANNNNNN

e Y = T v e g g g g e G- e g g P

129

OUTPUT FILE OF MTRM

oo [+ 4 o [+ <

x o 2 o [+

a o (=] [=] (=]

m m m m 20}

u. IIH u u Hw

- -— L -— -—

1
1
1
1
1

L
L
L
L
L

m m m m m

= = = =¥ =

o™ o o o o

o o o o o

Q Q

45
AGS AGC LI3 RI3 LIY4 ISB IML LQ1 RQ1 LQU QSB QML ADD AER TIR
2
2
2
2
2
2
2
2
Q
1
1
1
1
1
1
1
1
Q
3
3
3
3
3
3
3
3
Q
2
2
2
2
2
2
2
2
Q
1
1
1
1
1
1
1
1
Q
3
3
3
3
3
3

Enter the AGS please

Count

2] 72} 2] (2] 12}

130

oc s o o o o

[+ x [+ [+ 0 o

Q] - [(=) [=] (=]

m m m 28] m [22)
00500000000500000000522222222Sal..l1111115333333335222222

@ 4 o o o o (@4

= = 4 = = =

-— - Lot -— - -—

- -— -— -— — -—

m [s0] 28] /m 0 m
=r =r = = = =
o o o o~ o o
o o o o o o

Lo <t <t < <t <

2]) L] v2 n (2]

131

o oo [+ o oo [+

[+ 0 s o 14 [+

Q Q [} (o] (o] =]

o (@4 o (e 4 o o

m m m m m [o2]
2251111-11!115333333335222222225111111115333333333222222

o (e 4 o o o o

= == = = = =

- - -— Ll Ll ~—

— - - L adl o -

m m m m [+2] m
— — -
= = = = = =r
[3a] o o o o o
o o o o o o

<< <t <t < << <t

(2] 172} 2] V) 12} 2]

132

[+ o~ [« 4 o o o
OOHOOOODOOOOHOODODOOOOOHOOODO0OO0OO0OO0OOHHOO0O0O0O00O0OO0OOHOO0OO0OD00O0O0OO0ODO-ODO0OO0OOOO

[2] B~] = [2] =~
n [+ [+ [+ [+ [+ 4

a] (=] (o] =] [=]

B B B B B B

= = = b= = =
-— -— - -— — -—

1 1I 1! 1! 4| 1

- -

m m m m [22] om
i —

= = =r = = =

o o ™ o o o
o o o o o ™M

Q (&}

)) 2] 72} 2] 2]

133

24 24 24 [° 21 24

[+ o~ [+ o [+ [+
SSE99999999888888888E5555555—.—:.511111111533333333E"ﬂ44"ﬁuu

< <r <t <C - =T T I I A T

[=] (o] (] [=)] Q [=]
99088888888055555555011111111D33333333DuhﬂuuuuuuDql.lclala.lal

< << < <t < P 0L e

() [« I N N A Qo [« S R R R I | (I S I Y

m m [22] m m m
225111111115222222225111111115111111115222222225111111

[« 2 N A N A I ' 4 [« 2 I Y I R LI I I R I I B | ' O [« 2 R T R R |

= = = X = =
00022222222Q11qlalcl111Q33333333Q22222222Q11111.1:4!1Q333333

fu= | [~d 3 = .-}

-— - -— L et -— -—

L od L pud L d L ad - —
33Q22222222Q11-1l-|1!¢|11Q33333333Q22222222Q1l1|1|¢|4|¢|1..1|Q333333

[sed [wd] =

— Lo Lo R N R R I 2 I I = I A T I A R [] Lo N R R B B I |

[se] m [+9] m =] m

L] Lo T L I R e R R R I Y S T S T TR T i Lon B I S 2 R I B = R D E R R |

= ¥ = = = =
00111111111133333333122222222I4|1|1111111333333331222222

3 o] 1] =1

(28] o o o o o

o o (a8 o o o
33.122222222111111111133333333122222222I4I1-11I¢|1|¢|1I333333

o] [[wd ~J ~J

Q Q
o o [s\aXaa} o
2] [2] 7] [2] v) 12}

134

[+ [+ [+ oo [+ 4 2]
OOI13“10000113“13000.113"-.13“.00113413"-.1011-3"%13"-.13113"*13.4
| 20 ! [} I [)] 1 = ! 1 = t 1 |] '
[+ 24 [+ 4 [+] [+ o
W~ — - OO ET T T TTE v MO NE — — —
I 1< <t =S T T D R B N B B 1 <€ < 1 1 11
[] o (=] [a] [] (o]
e QMMM AST TSI IO =N Xsaraloalaa e na naX= ot - g = o= g g gl = I ool ool ol anlih o g
<t < 1 U 1 1 0 1)) < < | 1 1 ¥ 1 1)) =<
u.hﬂm 1111111 1&33333333&“444“4”“& 11111111 &33333333&”"—.““"’"&
t< 20 N R I D I T T T« R Y IO R B B B A« 4 e 20K WK T T T T RO T = 2000 R R S R A B B A @
m [22] m [20] [22] [~e]
—) v o e 522222222511111111511 11111 15222222225111111
[T 0 T T R T B R B B @ P 22K IR T T T T T T = J R O N RO B B B B @ [« 20 N T B B B |
= = = = = =
33Q2222222201111111¢|Q33333333Q22222222Q11111111Q333333
- =] [us} 1 (5] -1
— L ol Ll — - -
- - L ud — -— -—
33Q22222222Q4|4|4I.|.|111Q33333333Q22222222Q¢|11 11111 [« ZsaXaaXeaNeaXonlaal
-J - s | wd] 1
11&33333333&”44“4&.”“%11111111.&33333333&4““4&.4”&.&111.111
[I I R (N N N N B R O B P R T T NN N RO N IR = N RN R S R R B BN B) [2 T R B R B
m m m m m m
— = NANONNANANNANNUY) ™™ v 1151¢|.ql11!1.1‘10522222222511111’115111111
LI v T T TR TR T T T T T N N U BN N A N M) 5T T T N Y R A N N B A B B B |
=T == = =T = =
AN = 11|4I133333333122222222T.1|4|1111111333333331222222
— -1 wd [| w1 1
o o o o o o
o o o o o ™
331222222221111-11111133333333122222222111 11111 - = OO
(= [- - [3
Q (&) Q Q m Q
33m33333333Mm33333333“00000000“00OOOOOOAOOOOOOOOMOOOOOO
12} [2] 12} 2] 12} 2]
66%77777777%88888888% 1111111 1M22222222%33333333%"“43“4

135

[o o o [+ 4 >4
13113”13413I13“.13“».1!3.113“.13"#13[13”13”13I13413“13I13413u
= 1 ' [| 1 [ad !] (2) t [) L} [} £~] 1
[+ [+ o o [+ 4 o~
11E33333333E“ﬂ”“~.uu4uu€11c|1lcl1lal1|E33333333E"~."ﬂ“~.“ﬁ“~.“~.uu£111111
LI I - - D R D B B = I L R L R T - S T R R T R T < 1 1 1 0
o] [=] (=] Q [=] o]
11D33333333D44"““4“"D1111|1|4|4I¢ID33333333Du4uuu“ﬂuun111111
<% < I 1 1 " e <T < I 1 1 1) e
.u.u.m 111111 .l.alm33333333muuuuuu4umalqlalilalcl.l1&33333333&“44""”
(< 2un B R R R R I e 2 e R Y R A R R B & (@ S I« D R R N R A [N e 4
m 21} [o0)] m 2] m
[B« 2 B I e I B B'e 4 [« 20 N B A I I A I e 2 R R T TR T | [e 4 [« S I T I |
= = =r = = =r
33Q22222222Q11.|¢|1|4|4|1|Q33333333Q22222222Q11111111Q333333
[[o8 [w 1
— — - Lot - -—
— — - — — -
11&33333333&“44444&.4&11.111111m33333333&&.4&.4444“&111111
LI I I I R D I A B I] Lo T R R N I I R I = R Y R R R T R R = =0t t
[s2] m 2] m [2+] [20]
LI] Lan J N I I R R B I B0 T T T T TR I T T v Lo J T I N IR R B B B I T T T T
= = = == == =
22Iql.lalnlalnl11I33333333122222222I111111111333333331222222
. | [-] w1] =
o o o (28] o o
21132132321132132121132132131132132132-1121321321131321
[+ 4 o o [+ < o [+
o o o o o o
33I22222222111111.l.al1I33333333I22222222I111111111333333
o - = 1 [} .
O (& Q Q Q O
00GOOOOOOOOGOOOOOOOOGOOOOOOOOGOOOO COO0OUrrrrrmrrerr O e -
<L < <t < <t <
|2] 2]) 12} 172} 1]

136

1
3
2
3
-4
s
3
-1
1
3
2
6
-y
1
3
-k
1
3

-1
-1
-1
-1
-1
-1
-1
-1
LQ4 QSB QML ADD AER TIR
-3
-3
-3
-3
-3
-3
-3
-3
LQY4 QSB QML ADD AER TIR
4 2
4 6
4 -8
4 1
4 3
b4 -4
4 1
4 3

-1
-1
2
2
2
2
2
2
2
2
6
6
6
6
6
6
6
6

-8
-8
-8
-8
-8
-8
-8
-8

1
1
3
3
3
3
3
3
3
3
-4
-4
-4
-4
-4
-4
-4
-4
1
1
1
1
1
1
1
1

y
4

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

2
2
2
2
2
2
2
2

-1
-1
-1
-1
-1
-1
-1
-1

3
3
1
1
1
1
1
1
1
1
3
3
3
3
3
3
3
3

3
3
AGS AGC LI3 RI3 LI4 ISB IML LQt RQ1 LQ4 QSB QML ADD AER TIR
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
Q
1
1
1
1
1
1
1
1
Q
3
3
3
3
3
3
3
3

3
2

-— -

1
1

-1
-1
b
N
n
N
n
y
y
i
-1
-1
-1
-1
-1
-1
-1
-1

-3
-3
2 -3
2 -3
2 -3
-3
-3
-3

-1
-1

2

2

2

2

2
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

2
2
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2

1
1
1
1
1
1
1
1

3
2
1
3
2
3
2
1
3
2
I
1
3
2
1
2
1
3
2
I
1
3
2
1
3
1
3
2

2
2
2
2
2
2
2
2
I
1
1
1
1
1
1
1
1
I
3
3
3
3
3
3
3
3

3
3
LI3 RI3 LIY4 ISB IML L

C LI3 RI3 LI4 ISB IML L

1
1
1

— e v - — o g g - - —

<q <

172} 2]

2
2

137

138
2N INRENTIONALLY i A PRECEDING PAGE BLANK NOT FILMED

Appendix F

PROGRAMS IN C AND SIMULATION RESULTS FOR DATA FLOW OF SAMPLES IN THE
HARDWARE INTERFACE

139

/* Hardware behavioural model for data flow in the carrier
data and storage modules %/

/*%* This program aims at governing the data flow among the
three modules come into play by interfacing them. The data
flow, control circuitry and interfacing is easily simulated
for the structure. %/

#include <stdio.h>

main()

{
/* Initializations */

int read_disable=0;
int 1=1,en=0;
int count,m,k,i,q,j,adder_I,adder_Q;
int I_buf,Q buf,I_inv,Q_inv;
int agc=0;
int h=1;
int sine,cosine,i_sample,q_sample,I_temp,Q_temp;
int d=1,s=1,x=0,ARE=0,ctr=0,SRE=0;
int i_bufferlatch[5],q_bufferlatch(5];
int mult(5];
int add,sub,latch{3];
int srlatch_s,srlatch_c;
FILE *fp,*fp1;
/* Define structures for memory %/

struct r?m_d

int location_I[9];

%nt location Q[9];

’

struct ram_d DDR;

struct rambuffer

{
int latch;
int location([9];

};

struct rambuffer ram_i[5],ram_q(5];
struct ram
int location[10];
struct ri& Accumulation_RAM_I,Accumulation_RAM Q;

struct doubleram

int location_S[9];
int location C[9];

140

};
struct doubleram Storage_RAM;

struct rom

int location_sS;
int location_C;
b

struct rom Qutput_ ROM;

struct irom
{
int location_I;
int location Q,
b

struct irom Input_ROM;

/* Initializations for
memory structure */

for{(j:1;j<:9;J++)

Storage_RAM.location_S[j]=0;
Storage_RAM.location C[j]=0;
Accumulation_RAM I. location[j =0;
Accumulation_RAM_Q.location[j]=0
Input_ROM. location 1=0;

Input_ “ROM.location | _Q=0;

Output ROM.location _S= 0;

?utput ROM.location C 0;

)

fOP{(1:1;1<:4;1++)
fOP{(j:1;j<:8;J++)
?am_i[il.location[J]=o;

ram_i[i].latch=0;
}

for{(i=1;1<=4;i++)
for{(j=1;j<:8;J++)
Eam_q[il.location[j]=0;

ram_q(i].latch=0;
}

for{(J:1;j<9;j++)

DDR.location_I[3]=0;
DDR.location Q[j1=0;

141

}
add=0;
sub=0;
latch(11=0;
latch{2]=0;
/% Start main program */

printf("Enter the count of Address Generator for Samples Please");
printf("\n");

scanf("%d",&count);

fp=fopen("sam.dat","r");

fp1=fopen("outint. dat" "w")

fprintf(fp1,"Enter the count of Address Generator for Samples Please");
fprintf(fp1,"\n");

fprintf(fp1,"count");

fprintf(fp1, "\t");

fprintf(fp1,"%d", count);

fprintf(fp1,"\n");

for (k=1;k<=count;k++)

{

fscanf(fp,"%d",&1);

fscanf(fp,"%d",&q); /* clock is negative %/
/* Data flow in MCRM #/

%f (SRE==1)

Storage RAM.location_C[s]=I_temp;
Storage RAM.location_S[s] =Q_temp;
s=s+1;

if (s>8)

-~

Output_ROM.location_C=adder_I;

Output_ROM. location S:zadder Q,

if (read_disable==1)
{
adder_I=Accumulation_RAM_I. location[d]+Input_ROM.location_I;
adder Q Accumulation RAM Q location[d]+Input ROM.location Q,

}
1f (read_disable=z=0)

adder_I=Input_ROM.location_I;
adder_Q=Input_ROM.location_Q;
h=h+1;
if (h>8)

{

h=h-8;

gead_disable=1;
}

142

Input_ROM.locatlion_I=i;

Input ROM.location Q q;

ram_i[1].latch=1; /* clock Is negative #*/
ram_q(1].latchzq;

for (m=2;m<y;m++)

ram_q(m].latch=ram_q{m-1].location[1];
}
for (m=2;m<4;m++)

ram_i{m].latch=ram_i[m-1].location[1];
}
/% Additional buffer
interface needed for the modules */

1 _bufferlatch(4]=1 bufferlatch{3];
1 bufferlatch[3]=1 bufferlatch[Z],
i_bufferlatch[2]=1 bufferlatch[1];
i_bufferlatch[1)=ram _1[3]. locatlonﬁl],
q_bufferlatch{#]=q _bufferlatch[3];
q_bufferlatch[3]=q _bufferlatch[2];
q_bufferlatch[2]= q_bufferlatch{1];
q_bufferlatch[1]zram_q(3]. location[ll
srlatch_s=Storage RAM.location S[s-1];
srlatch_c:Storage_RAM.location_C[s-1];

/* Data in MDRM ¥/

latch{ 1]=add;
latch{2]=sub;
add=mult(1]+mult(2];
sub=mult{3]-mult(4];
mult[1]=1_sample*cosine;
mult{2]=q_sample*sine;
mult{3]=q_sample*cosine;
mult[4]=i_sample*sine;
q_sample=q_bufferlatch(4];
1_sample=i_bufferlatch[4];
sine= srlatch_s;
cosine=srlatch_c; /* clock is positive #*/

DDR.location_I[1])=I buf;
DDR.location_Q[1]=Q buf;
I_buf=I_inv;

Q buf= Q inv;

I_inv=latch[1];

Q_inv= latch[2],

I temp Output_ROM.location_C;
Q _temp= Output ROM. location . _S;

/% Control circuitry %/
if (ARE==1)
{

Accumulation_RAM_I.location[d]=adder_I;

143

Accumulation_RAM_Q.location[d]=adder_Q;
d=d+1;
if §d>8)
d=d-8;
}
}

/%* MRBS data flow */
for (m=1;m<l;m++)

ram_i[m].location(1l])=ram_i[m].latch;
ram_q(m].location[1l]=ram_gq(m].latch;
}

/% Print the data flow */
fprintf(fp1,

"43s 43s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s %3s 43s\n",

"AGS" , "AGCY , "ARIM R "ARQ" , WSRC" , "SRS" , ", 13" , "RI3" , "LQB" , "RQ3" ,
"BIH" , "BQL‘" , "SLC" , "SLS") "DIL" , "DQL" R "RID" , "RQD") ;
for{(J=1;J<9;J++)

fprintf(fp1,"%2d",1);

fprintf(fp1,"%l4d",agc);
fprintf(fp1,"%4d",Accumulation_RAM_I.location[j]);
fprintf(fp1,"%U4d",Accumulation_RAM_Q.location[]j]);
fprintf(fp1,"%Ud",Storage_RAM. location C[j]);
fprintf(fp1,"%Uqa", Stora%eTRAM logation KISE
fprintf(fp1,"%d4d",ram _1(3].1latch);

gprintgggp: x;ﬁg:,ram 1%3% iotaﬁ§on[J]),
printf(fp ram_q atch);

BT inCE (ot wgldv s mstatiaseniys

fprint d ufferlatc

fgiintf§f§1 ";ud" q_ bufferlatch[ﬂ]):

fprintf(£fp1,"%Ud",srlatch_c);
fprintf(fp1,"%l4d",srlatch "s);
fprintf(fp1,"%ld",latch(1]);

fprintf(fp1,"%ld",latch[2]);

fprintf(fp1,"14d",DDR.location 1031);
fprintf(fp1,"%l4d",DDR.location Q(31);

{printf(fp1,"\n");

/* Control circultry */
1=1+1;
if (en==1)

if (1==4) SRE:z=1;
}
if (1==2) ARE:=1;
if (%>8)
1=(1-8);
agc=agc+1;
if (agc==3) en=1;

144

if (age>3) agc=age-4;
if (age==0) en=0;
printf("\n");

}

if (age==0)
{
if (1==2) read_disable=z0;
}
}
fclose(fp);

fclose(fp1);
}

145

INPUT FILE FOR HARDWARE INTERFACE

NN ANNANNNNNNNANNNNNANANNANNNNNNN

Y A g Y Y Y G T P T T e O O P O e e

NANNTm NN ANNNNNNNNNNNNNNNNNNNN

e Y e P Y= - T T P P O T = T T T T - T e

ANANNm AN ANNNNNNNNNNANNNNNANNNNNA

e T T P e g g T T YT T T Y - v - e e e

NONQANm——ONANNNNNANNNNNNNNANNANNNANNN

e i i . sl k. sl st el i et N i i i i B B ol ol

NANTmT NN NNNNNNNNNNNANNNNNNANNN

- g P T Y e T T T T T T T T T T T e e

AN~ NANNNNNANNNNNNNNNNNNNNNA

T T N Y T T e T T Y YT V- g T T T e

NN~ NANNANNANNANANNNNNNNNANNNNNANN

[T dl T e e R R i i anth st andit i B o ol e i B o

NN~ A NNNNNNANNNANANNNNNNNNNNN

Y g g P P G e G P G e g g Y T TR T T T T T T T e

NN~ (AN NNNNNNNMNNNNNNNNNNNNN

e g g g Y e g e g Y P Y (e G g g g P T PR P T P v P e e

NN~ OANANANNNANNANNNNNNNNNNNNNANAN

e YT T T T T T T T T T Y T Tt T e

NANN AN ANANNNANNNNANNANNNNNNNNNANN

Y - e T T T T e T P T P O S T T v v e

NANN NN ANANANNNANNNNNNNANNNNNNNN

. Y G g g e g G Y T Y PR e G Y g S P P P TR T P v e e

NN~ A NNNNNANNNANNNNANNANNNNNNN

= e T T T T T T T T Y- - e T T e e e

ANANN~ A NANNNNNNNNNNANNANANNNNNNN

" T T T Y T T T T T T T e . e e T T T T e

NANN~ NN NNMANANNNNNNNMNANNAANNNNN

- e T T e T P T T T e T O T e T

146

OUTPUT FILE OF INTERFACE

Enter the count of Address Generator for Samples Please

count

(=] o) o] Q

[a] (] [&] (o] Q

-] =] 2 | |

% | = = | | -
1] 2} g} 1] 9]
Q Q & Q Q
= = = = =
= = = = =

(s} o [38) o (28]

o o o) o o
o o o) o (28]
o) o o o o
72] 2] 78]
00000000“00000000S00000000@nuooo00000&000000005000000
(&) (&) (@) Q Q
00000000“00000000ﬁc0000000-n\nvoo000000“00000000“000000
o (@ 4 o o e 4
— [[— —
(=] OOOOOOOOR10000000R11000000R11100000R11110000R111110
wn <X << <t <L <€
(@) O

Q (9

S
S

AGS AGC ARI ARQ SRC SRS LI3 RI3 LQ3 RQ3 BI4 BQY SLC SLS DIL DQL RID RQD
S

1
1
1
1
1
1
1
1
G
2
2
2
2
2
2
2
2
ACS
3
3
3
3
3
3
3
3
AG
m
y
n
4
y
i
n
i
AGS
5
5
5
5
5
5
5
5
G
6
6
6
6
6
6

A
A

147

(=) (=] [=] [Q [=)

4
a [=)] =] a (]

o1 1 wd wd = o3

= | 1 wJ o3]

v} 0) v) 1] 1]

Q (&} O (8] (&

O

u. .u. .4 Mﬂ .u. n.
= = =r = =

=

o™ o o o [\a) o

o (2] o o o o™

o o o (3] [ag) o

o o oy o) o o

& & & & 2
00500000000“000000005000000005000000005000000005000000

(8] &) O O O Q

o o (e 4 [g o [« 4

-4 — - — - Lo
00RA|1|¢|4|14|OOR1111111|0R1114|1111ID.\.21111111R22111111R2221’11

<C < << <C < <

3 3 8 3 3 8
[oNe] 00000000000000000G11111|4|1|1G1111I¢I.11I1| - - - - - -

< < <t < <C <

1 2] V) 2] n v wv)

148

[Q o o =] [

o
[=] (=]] o [[=]

oJ o] [J | [

(=]] |] o |
v v)) 2] 7} 02
(& Q [&] Q Q O

== =r = == = =

= = = = = =r

o o o o [sa) o

o o o o (58] o

o o o o o ™
[a8) o o o o o
& &2 & & & &2
O (&) (&) (& [&) [8]
(e 4 o o [« 4 (e 4 (@ 4

- — — — — —~

© Q 8 : 8] 8
<t L= < <z X <t

2] 12}) [2] 2] v)

149

[n) Qo =] (o) =) (=]

0o [} o a a o

) wd o] - - | |

-1 o | o3 wd =1 I
v} 2] 2] %] v) v
(@] (8] : Q Q [&] Q
= = = =r =t =
= = = = = =r

3 3 3 3 3 3

o o (58] o [sa) o

] wt -J

o o o o ™ o
OOI’QIA‘I0000011111000OI111110001111111001111111101111111

o [~ -4 - 4 [+

o) o o (28] o o
1111111111111111111111111111111111‘1111111111111-111!1111

w1 -1 w1 -1 [[

4 & &2 & &2 &
Oosoo000000Soo000000S00000000@nuo00000008000000005000000

O Q [S] & O Q

o o o (@ 4 o o

L] L L] 4 L) -

Q (8] (8

72) 2] 2] 0 2]

150

(=] =] o]) [[

[=] o [} (] =] (=]

] w1 o]] o3)

1 -1 = =) - =1

2 12} %2] '] v) 2]
Q (& Q (&) (& (8]

= =z =r = =r =
OOWOOOOOOOOWO0000000&00000000”22222222%22222222%222222

=r = = = = =
[22]

™ ™ o o (2] o

o ™! o o o ™

(a8] [l o o o o

4|4|I1|1l¢|1la.l1|4|4|I11|1|1.|1|4|1|¢|I14|1|1|1I¢|11I111111111111111111111111
[+ 4 - [+ [+ 4 o [+
o o ™ o o o
11111111111I11111111I111111111111111111111111111111111
| -~ -1 ~d (=) -7
0 1
(& Q (8 Q Q O

[g o o o o o

- L) e L — bed

O

123 [2] |2] (2] [2] 2]

151

(o]] (=) Q (o] o

3
3

Q O

1] 72] 1’2] 12} 2]

6
6

=

[==] o a (=] [=] [=]
0010000000010000OOOOI0000000OIOOOOOOOOIOOOOOOOOIOOOOOO

0 24 [+ AaV} @ AoNN mNNN NN

[| [-] wJ ~d wl

1 | =] o] o3 -
OOI0000000O.l.OOOOOOOOI00000000IOOOO00001000000001000000

D22222222D22222222D22222222D22222222D22222222D222222

v} v) 2]) 2] v)

Q Q (8 (8] (& Q

= = = = = =

= = = = = =
11

m m [22] m [3¢] m

o) o o o (28] o

[2.4) o o o o o

o o o laa) o o
11I1111111¢|I11111111II111111111111111111I111111111111111

o ~ o m ~ [+ 4

o ™ o o (38 o
111111111111111111111111!11111I11111111I11111111I111111l

o w1 -1 -1 .| =

0] n 2} m m m

O O O | &) Q Q

o o g £ 4 &

i — L] — Pl L)

O

(&)

<

L2]

(&)

<

152

n [a] (=]] =] a

(=] [] [=] O (] o
OOIOOOOOOOOIOOOOOOOOI00000OOOIOOOOOOOOIOOOOOOOOIOOOOOO

maNNANANN N EANNNANNN MONNNNNNN CNNNNNNN -4 NANNNNNN o NN Ny

i |] o) [wl

=] .|] | w1 -]
00100000000I0000OOOoT.00000000IOOOOOOOOIOOOOOOOOIOOOOOO
NANAONNNNANNNNO [=] [&] (=] [=]

0 2] %] v 2] 2]

Q Q Q Q (& &)

=r =r = =r =+ =

= == = = o ==
11

m [22] [22] m -] m

o o o o o [5q]

o) ™ o o o e

o o) o o o
1¢|I1l1|4|4|1l14|4|I!lal111111[11111111111111111I111l1¢|1-4|¢|I1|1|1la|1l1|

o o0 [+ [+ s [+

o o o o o o
11I11-1_.|11111111111111111111117111111111I11111111I111111

(8] = w3 [- ~

2] 2]

[&] O [&] o] 8] Q

(e 4 o o o (= ¢ o

Lol — — — — —
u.u-RalalalaIu\u-uuRal‘ql‘laluu.u.Ralalcl111”4R1111111"R1111¢|¢|1|1IR2¢|1011¢|

< <t < <t < <t

3 3 3 3 8 8
OOAOOOOOOOOAOOOOOOOOMHUOOOOOOOOAOOOOOOOOA.laI.I‘Ialcl.IqIAanI.InIclaI

2] v) 2] 2] 2] 2]

153

[=) 2 [=) [=] Q [=]

o

=] a [a) (=] [=]]
OOIOOOOOOOOI000000OO.l00000000IOOOOOOOOIOOOOOOOOIOO0000
N [+ NANNN [4 NN e o N (s 4 [§V] [+ [+

- =1] oJ w1 o

| 1] 1] =)

w0) 2] 2} 2} %]

[&] O (8] Q O &)

= = = = =T =

= = =g =4 = g
1111111111111111111111.‘11I¢|¢|1¢|I4|4|11|14|1I1I1I14|111111111111

m m m m m 0

[sa) o o o o o

™ o o [sa) (28] [2a}

o o o o o o
11..[.1..111!111

o =4 o~ [« 4 - o

o [ag) o o o o
11111111111111111111I1.|1|1I14|1111111111111111111111111111

] = w1 - -1 -1

& & & & &
88588888888588888888MS88888885888888885888888885888888

[&] Q O O |8 |8}

(e § o o g o o 4 le 4

- — - L - L

Q [®] Q [&)
—_rOrrrrrrrerrerecr O e e e e e 11111111G11111111011111111 - - - =
<t L=+ <t <t <t <

L2} 12} 2] 172} 12} (2]

154

o Q

=] a

oJ wd

g =1

12} 0

[&] (8]

= =

=T =

] T T e T] T v = e e - -

m m

o [sa]

D) o

o ™

L andil il e Bl ol it el o ol B I R B

o "
o o

V™ bl T T T T = | T = e e - —

-l -

2]

(&) O

o (e 4

— —t

S

2] 12}

155

Appendix G

A PROGRAM FOR THE MAPPING OF 2 CHANNELS ON A BINARY HYPERCUBE FOR
MODEL-I

156

This is a program for simulation of 32 simultaneous

voice channels. Each channel has U4 tasks operating in parallel

or pipeline as in Model-I. In this program each task is assumed
-- to be assigned to a processor. Therefore each hypercube has

2 channels assigned to it. We need 16 hypercubes for this purpose.

with math_1ib;

with text_io;

procedure demod_hypercube is

use text_io;

type real is new float;

package my real is new float_io(real);
use my_real;

package mathl is new math_lib(real);
use mathi;

package int1_io is new integer_io(integer);
use int1_io;

count: integer;

input buffer : file_type;
output buffer : file_type;
I_sample, Q_sample : real;

-- Define the tasks in parallel or pipeline

task type each_carrier_1 is
entry sample (In_s, Qn_s : in real; Channel_no : in integer);
end;

task type each_carrier_2 is
entry sample data(In_data,Qn_data: in realjchannel: in integer);
entry new_sample(new_I,new_Q : in real; ch: in integer);

end;

task type each_timing is
entry samples (I_sample, Q_sample : in real; channel : in integer);
end;

task type each_data_recovery is
entry phasezi_part,q_part: in real; channel : in integer);
end;

-- Define an array of parallel tasks

multi_carrier_2: array(1..32) of each_carrier_ 2;
multi_data_recovery: array(1..32) of each_data_recovery;
multi_carrier_1: array(1..32) of each_carrier_1;
multi_timing: array(1..32) of each_timing;

-- Code alloted to task Each_Carrier-1

task body each_carrier_1 is
new_In, new _Qn : real;

157

updated_In, updated Qn: real:=0.0;
new_magnitude, new_phase : real;

m : real := 4§.0;

type period is array(1..16) of real;
temp_In, temp Qn : period;

channel : integer;

begin

for 1 in 1..16 loop
accept sample(In_s,Qn_s : in real; Channel_no: in integer) do

temp_In(1i) := In S;

temp Qn(i) := Qn _S;

channel := channel _no;
end;

end loop;
for 1 in 1..16 loop
new_magnitude := (temp_In(i) * temp_In(i) + temp Qn(i) * temp Qn(i));

new_magnitude :

new magnitude * new_magnitude;

new_phase iz m * atan(temp Qn(i)/temp In(i));
new_In := new_magnitude * cos (new_phase);
new_Qn := new_magnitude * sin (new_phase);
updated_In := new_In + updated_In;
updated Qn != new Qn + updated_ “Qn;

end loop;

multi_carrier_2(channel).new_sample(updated_In,updated_Qn,channel);

end;

-~ Code assigned to task Each_Carrier 2

task body each_carrier 2 is
updated_In,updated Qn: real;
output_ In output Qn,carrier _phase: real;
sine output cosine _output:real;
channel: integer;
type period is array(1..16) of real;

my_
ch:

begin

In,my Qn, digital I : period;
integer;

for 1 in 1..16 loop

accept sample_data (In_data, Qn_data :

my_In(i) := In_data;
my | “Qn(1) := Qn _data;
ch := channel;

end;

end loop;

accept new_sample(new_I, new Q :

updated_In:= new_I;
updated_Qn:= new_Q;
channel := ch;

end;

output_In := updated_In/16.0;
output_Qn := updated Qn/16.0;
carrier_phase = (

in real; channel: in integer) do

in real; ch: in integer) do

1.0/4.0)*atan(output_Qn/output_In);

158

sine_output := sin (carrier_phase);

cosine _output := cos (carrier_phase);

for 1 in 1..16 loop
my_In(i) := my_In(i)*cosine_output + my Qn(i)*sine_output;
my_Qn(i) := my_Qn(i)*cosine output - my_ In(i)*sine_output;

end loop;

for 1 in 1..16 loop
multi_data_recovery(channel).phase(my_In(i),my_Qn(i),channel);
multi_timing(channel).samples(my_ In(i),my Qn(iT channel),

end loop;

end;

-- Code assigned to Each_timing

task body each_timing is
Un, I_Un, Q_Un : real;
Wn : real := 0.0;
type estimate is array(1..16) of real;
in_between_I, in_between Q : estimate;
ch:integer; :
begin
for 1 in 1..16 loop
accept samples(I_sample, Q_sample : in real; channel: in integer) do
in_between_I(i) := I_sample;
in_between_Q(i) := Q_sample;
ch := channel;
end;
end loop;
for 1 in 1..16 loop
if (i mod 2)= 1 and i < 15 then
I Un := (in_between_I(1i)- in_between_I(i+2))*in_between_I(i+1);
Q_Un := (in_between Q(i)- in_between_Q(i+2))*in_between_Q(i+1);
Un I | Un +Q Un,
Wn := Wn + Un;
new line;
putT"This is timing of ");
put(ch);
put(" channel");
put(wn);
new_line;
end if;
end loop;
end;

-- Code assigned to Each_data_recovery

task body each_data_recovery is
type period is array(1..16) of real;
my_In,my Qn, digital I, digital Q : period;
ch: integer;
begin
for 1 in 1..16 loop
accept phase(i part, q_part: in real; channel: in integer) do
digital I(1) :=1_part;

159

digital _Q(i) :=q_part;
ch := channel;
end;

end loop;
for i in 1..16 loop

new line(2);

put("This is I data of channel");

put(ch);

if digital_I(i) > 0.0 then
digital_I(i) := 1.0;

else
digital_I(i) := 0.0;
end if,
put(digital I(i));
new line;
put{"This is Q data of channel");
put(ch);

if digital Q(i) > 0.0 then
digital Q(i) := 1.0;
else
digital Q(i) := 0.0;
end if;
put(digital Q(1));

end loop;
new_line;

end;

~-- Main program sets off the tasks of several channels to

-- operate in parallel or pipeline.

-~ It calls the tasks for 32 channels. It gets the input

-- from a buffer called "samples.ada" and transfers data to the

begin

tasks which operate on this data.

open(input_buffer,in file,"samples.ada");
for k in 1..16 loop

count:=1;

while not(end of file(input buffer))and count <= 32 loop
get (input_ buffer, I _sample);
get(input™ buffer,Q “sample);
multi_carrier _1(count).sample(I _sample,Q_sample,count);
multi carrier 2(count) sample_ data(I sample,Q sample,count);
count’: zcount+1;

end loop;

end loop;
close(input_buffer);

end;

160

Appendix H

A PROGRAM FOR LOAD BALANCED PROCESSING OF 2
HYPERCUBE FOR MODEL-II.

CHANNELS ON A BINARY

161

-- This is a program for simulation of 32 channels. It has

-- Y4 tasks operate in parallel or pipeline for each channel.

-- The tasks are assigned such that they have nearly equal amount
-- of operations (load balancing).

with math_lib;

with text_io;

procedure sigma_demod is

use text_io;

type real is new float;

package my real is new float_io(real);
use my_real;

package math1 is new math_lib(real);
use mathl;

package int1_io is new integer_io(integer);
use int1_io;

count: integer;

input_buffer : file_type;
output_buffer : file_type;
I_sample, Q_sample : real;

-- Define the tasks for channel

task type each_carrier_1i 1is
entry sample_i (In_s, Qn_s : in real; Channel_no : in integer);
end;

task type each_carrier_1q is
entry sample q (In_s, Qn_s : in real; Channel _no : in integer);
end;

task type each_carrier_2 is
entry sample data(In_data,Qn_data: in realjchannel: in integer);
entry new_sample_i(new_I : in real; ch: in integer);
entry new_sample_g{(new_Q : in real; ch: in integer);

end;

task type each_timing is
entry samples (I_sample, Q_sample : in real; channel : in integer);
end;

-- Define the maximum channel array in the system
multi_carrier_2: array(1..32) of each_carrier 2;
multi carrier_1i : array(1..32) of each_carrier_1i;
multi_carrier_1q : array(1..32) of each_carrier_1q;
multi timing: array(1..32) of each_timing;

-- Define code for each_carrier_1i

task body each_carrier_1i is
new_In, new _Qn : real;

162

updated_In, updated Qn: real:=0.0;
new_magnitude, new_phase : real;
m : real := 4.0;
type period is array(1..16) of real;
temp_In, temp Qn : period;
channel : integer;
begin
for i in 1..16 loop
accept sample_i(In_s,Qn_s : in real; Channel no: in integer) do
temp_In(i) := In_s;
temp Qn(i) := Qn_s;
channel := channel no;
end;
end loop;
for i in 1..16 loop
new_magnitude := (temp_In(i) * temp_In(i) + temp Qn(i) ¥* temp Qn(i));
new_magnitude := new_magnitude * new_magnitude;
new_phase := m * atan(temp _Qn(1)/temp_In(i));
nevw_In := new_magnitude * cos (new phase);
updated_In ‘= new_In + updated_In;
end loop;
multi_carrier_2(channel).new_sample_i(updated In,channel});
end;

-- Define code for each_carrier_1q

task body each_carrier_iq is
new_In, new Qn : real;
updated In, updated Qn. real:=0.0;
new_magnitude, new phase : real;
m : real := 4.0;
type period is array(1..16) of real;
temp_In, temp Qn : period;
channel : integer;
begin
for 1 in 1..16 loop
accept sample_q(In_s,Qn_s : in real; Channel_no: in integer) do
temp_In(i) := In_s;
temp Qn(i) := Qn_s;
channel := channel_no;
end;
end loop;
for 1 in 1..16 loop
new_magnitude := (temp_In(i) * temp_In(i) + temp_Qn(i) * temp Qn(1));
new magnitude :z new magnxtude * new_magnitude;

new_phase := m ¥ atan(temp _Qn(1)7temp_In(1));
new_Qn := new_magnitude * sin (new phase);
updated_Qn := new_Qn + updated Qn;

end loop;

multi carrier_2(channel).new_sample_q(updated Qn,channel);

--The tasks each_carrier_1i and each_carrier_1q operate in parallel.
-- Define code for each_ carrier _2. It needs input from both the
-~ previous tasks.

163

task body each_carrier 2 is
updated_In updated Qn: real;
output _ In output Qn,carrier_phase: real;
sine_output, cosine output:real;
channel: integer;
type period is array(1..16) of real;
my_In,my Qn, digital I,digital Q : period;
ch: integer;

begin
for 1 in 1..16 loop
accept sample_data (In_data, Qn_data : in real; channel: in integer) do
my_In(i) := In_data;
my Qn(i) := Qn_data;
ch := channel;
end;
end loop;
accept new_sample_i(new_I : in real; ch: in integer) do
updated_In:= new_I;
channel := ch;
end;
accept new_sample_q(new_Q : in real; ch: in integer) do
updated Qn:= new_Q;
channel :=z ch;

end;
output_In := updated_In/16.0;
output_Qn updated Qn/16.0;

(1.0/4. 0)*atan(output Qn/output_ In),
sin (carrier_phase);
cos (carrier_phase);

carrier _phase
sine output
cosine_output

for 1 in 1..16 loop
digital _I(1) := my_In({)*cosine_output + my Qn(i)*sine_output;
digital Q(1) := my_ “Qn(1i)*cosine_output - my_ In(i)*sine_output;
if digital I(i) > 0.0 then
my_In(i) := 1.0;
else
my_In(i) := 0.0;
end if;
put("channel”);
put(ch);
new_line;
if digital Q(i) > 0.0 then
my_Qn(1) := 1.0;
else
my Qn(i) := 0.0;
end if;
put(my_In(i));
put(my_Qn(i));
end loop;
new_line;

164

for 1 in 1..16 loop
multi_timing(channel).samples(digital I(i), digital Q(i),channel);
end loop;
end;

-- Define code for each_timing. It needs input from each_carrier_2.
-- These four tasks define the division of work among the processors
-- of a hypercube for each of the channel.

task body each_timing is
Un, I_Un, Q_Un : real;
Wn : real := 0.0;
type estimate is array(1..16) of real;
in_between_I, in_between Q : estimate;
ch:integer;
begin
for i in 1..16 loop
accept samples(I_sample, Q_sample : in real; channel: in integer) do
in_between_I(i) := I_sample;
in_between_Q(1i) := Q_sample;
ch := channel;
end;
end loop;
for i in 1..16 loop
if (1 mod 2)= 1 and i < 15 then

I Un := (in_between_I(i)- in_between_I(1+2))*in_between I(i+1);
Q_Un := (in_between_Q(i)- in_between_Q(i+2))*in_between Q(i+1);
Un = I_Un + Q_Un;
Wn = Wn + Un;
new line;
put("This is timing of ");
put(ch);
put(" channel");
put(wn);
new_line;
end if;
end loop;

end;

-- The main program is the front end system. It picks up the data
from a buffer for each channel and starts tasks which operate
~-- in parallel or pipeline. The tasks each_carrier_1i and

-- each_carrier_1q operate in parallel. Their input is needed by
task each_carrier_2. The output of this task is used by the
task each_timing.

begin
open(input_buffer,in_file,"samples.ada");
for k in 1..16 loop -- samples
count:=1;
while not(end_of_file(input_buffer))and count <= 32 loop --channels
get(input_buffer,I_sample);
get (input_buffer,Q_sample);

165

multi_carrier_1i(count).sample_i(I_sample,Q_sample,count);
multi_carrier_1q(count).sample_q{(I_sample,Q_sample,count);
multi carrier_2(count).sample_data(I_sample,Q_sample,count);
count:=count+1;
end loop;
end loop;
close(input_buffer);
end;

(1]

[2]

[3]

[4]

[5]

[6]

(8]

[9l

(10]

(11)

[12]

(13]

(14]

REFERENCES

S. J. Campanella and S. Sayegh, "Onboard multichannel demultiplexer/
demodulator," NASA contract no. crl801827, 1987.

S. C. Kwatra and R. Bexten, "Analysis and design of a burst mode digital
demodulator implemented using a digital signal processor,” Report DTVI-22,
Electrical Engineering Department, The University of Toledo, Dec. 1988.

S. C. Kwatra and A. A. Thanawala, "FDMA/TDM conversion for non-contiguous
carriers,” Report DTVI-23, Electrical Engineering Department, The University
of Toledo, March 1989.

K. Ohtani and S. Kato, "An onboard digital demodulator for regenerative SCPC
satellite communication systems,” IEEE International Conference on
Communications, pp. 1803-1808, 1986.

K. Betaharon, K. Kinuhata, P. P. Nuspl and R. Peters, "On-board processing for
communication satellites: technologies and implementations,” International
Journal of Satellite Communications, Vol. 5, pp. 139-145, 1987.

E. Del Re and R. Fantacci, "Alternatives for onboard digital multicarrier
demodulation,” International Journal of Satellite Communications, Vol. 6, pp.
267-281, 1988.

W.Yim, C. C. D. Kwan, F. P. Coakley and B. G. Evans, "Multicarrier
demodulators for onboard processing satellites,” International Journal of
Satellite Communications, Vol. 6, PpP. 243-251, 1988.

F. Ananasso and E. Del Re, "Clock and carrier synchronization in FDMA/TDM
user-oriented satellite systems,” IEEE International Conference
on Communications, Seattle, Washington, pp. 1473-1477, June 7-10, 1987.

F. Ananasso and E. Saggese, "User-oriented satellite systems for the 1990"s,"
11th AIAA Communication Satellite Systems Conference, San Diego,
California, pp. 1-11, March 16-20, 1986.

T. Ohsawa and J. Namikd, "Digital group demodulation system for multiple PSK
carriers,” 11th AIAA Communication Satellite Systems Conference, San Diego,
California, pp. 313-320, March 16-20, 1986,

G. Perrotta, G. Losquadro and R. Giubtlet, "Satellite communication systems for
domestic/business services,” International Journal of Satellite
Communications, Vol. 5, pp. 85-103, 1987.

A. J. Viterbi and A. M. Viterbi, "Non-linear estimator of PSK modulated carrier
phase with application to burst digital transmission," IEEE Transactions on
Information Theory, IT-29, pPp. 543- 551, 1983.

F. M. Gardner, "A BPSK /QPSK timing error detector for sampled recetvers.,”
IEEE Transactions on Communications, COM-34, pp. 423-429, 1986.

P.J. Fernandes, L.P. Eugene, S.C. Kwatra, M.M. Jamali and J. Budinger, "A

parallel pipelined architecture for a digital multicarrier demodulator,” 13th
AIAA International Communications Satellite Systems Conference,

166

[14]

(18]

(16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(301

167

P.J. Fernandes, L.P. Eugene, S.C. Kwatra, M.M. Jamali and J. Budinger, "A
parallel pipelined architecture for a digital multicarrier demodulator,” 13th
AIAA International Communications Satellite Systems Conference,

pp. 285-294, March 11-15, 1990.

J. G. Proakis and D. G. Manolakis, Intoduction to digital signal processing,
MacMillan Publishing Company, New York, 1988.

S. C. Kwatra and M. J. Vanderaar, "Trellis coded modulation for satellite-based
mobile communications,” Report DTVI-25, Electrical Engineering Department,
The University of Toledo, August1989.

L. Kronsjo, Algorithms: Their complexity and efficiency, John Wiley and Sons,
Inc., New York, 1987,

Selim G. Akd, The design and analysis of parallel algorithms. Prentice-Hall
Inc., Englewood Cliffs, New Jersey 1989. :

K. Yano, T. Yamanaka, T. Nishida, M. Saito, K. Shimohigashi and A. Shimizu,
"A 3.8-ns CMOS 16X16-b multiplier using complementary pass-transistor
logic,” IEEE Journal of Solid-State Circuits, pp. 388-394, April 1990.

B. Gabillard, T. Ducourant, C. Rocher, M. Prost and J. Maluenda, "A 200-mW
GaAs 1K SRAM with 2-ns cycle time," IEEE Journal of Solid-State Circuits,
pp. 693-698. Oct. 1987.

S. T. Chu, J. Dikken, C. D. Hartgring, F.J. List, J. G. Raemakers, S. A. Bell, B.
Walsh and R. H. W. Salters, "A 25-ns low power full-CMOS 1-Mbit (128K X 8)
SRAM." IEEE Journal of Solid-State Circuits, pp.1078-1084, Oct. 1988.

F. Guibaly and B. McKinney, "A flexible pipeline architecture for digital signal
processors,” IEEE Conference on Communications, Computers & Signal
Processing, pp. 370-373, 1987.

B. W. Smith and H. J. Siegel, "Models for use in the design of macro-pipelined
parallel processors,” IEEE Journal on Computer Architecture, pp. 116-123,
1985.

Ewing Lusk, Portable programs for parallel processors. Holt, Rinehart
& Wintson, Inc, New York, 1987.

D. J. Kuck, The structure of computers and computations Vol-I. John Wiley &
Sons, Inc., New York, 1978.

K. Hwang and F. A. Briggs, Computer architecture and parallel processing,
McGraw Hill Inc, New York, 1984.

J. P. Hayes, Computer architecture and organization, McGraw Hill Inc., New
York , 1988.

Steven Brawer, Introduction to parallel programming. Academic Press Inc.,
San Diego, California, 1989.

G. J. Lipovski and M. Malek, Parallel computing. John Wiley & Sons Inc., New
York, 1987.

S. Dasgupta, The design and description of computer architectures. John Wiley &
Sons, Inc., New York, 1984.

131]

132]

[33]

(341

[35]

[36]

[37]
(38]

[39]

[40]
[41]

168

L.P. Eugene, "Parallel port interprocessor communications for 80386 based
systems," internal report National Aeronautical Laboratory, Bangalore, India,
June 1988.

L.N. Bhuyan and D.P. Agrawal, "Generalized hypercube and hyperbus structures
for a computer network,” IEEE Transactions on Computers, Vol C-33,
pp. 323-333, April 1984,

S. Abraham and K. Padmanabhan, "Performance of the direct binary n-cube
network for multiprocessors,” Proceedings of Conference on Parallel
Processing, pp. 636-639, August 1986.

J.P. Hayes, T.N. Mudge, Q.I. Stout, S. Colley and J. Palmer, "Architecture of a
hypercube supercomputer”, Proceedings of Conference on Parallel

Processing, pp. 653-660, Aug 1986.

L.P.Eugene, D.Kaur and S.C.Kwatra, "Performance of SCPC/FDMA models on
hypercubes,” Proceedings of the 21st Annual Modeling and Simulation
Conference, May, 1990.

Whiddett, Concurrent programming for software engineers. John Wiley & Sons,
Inc., New York, 1987.

H. Schildt, C:The complete reference, Osborne McGraw Hill, New York, 1987.

Reference Manual for the Ada programming Language, ANSI/MIL-STD-1815A-
1983, Springer Verlag, 1983.

Henry F. Ledgard, Professional Software: Programming Practice. vol-2, Addison
Wesley, 1987.

J.G.P. Barnes, Programming in Ada. Addison Wesley, 1989.
Henry F. Ledgard, Ada: An introduction. 2nd edition, Springer Verlag, 1983.

